login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137208 a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 2; a(0)=2, a(1)=3, a(2)=6. 3
2, 3, 6, 10, 22, 38, 86, 150, 342, 598, 1366, 2390, 5462, 9558, 21846, 38230, 87382, 152918, 349526, 611670, 1398102, 2446678, 5592406, 9786710, 22369622, 39146838, 89478486, 156587350, 357913942, 626349398, 1431655766, 2505397590, 5726623062, 10021590358 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 4, -4).

FORMULA

a(n) = (2/3)+(5/4)*2^n+(1/12)*(-2)^n, with n>=0. - Paolo P. Lava, Jun 09 2008

G.f.: (2 + x - 5*x^2) / ((1 - x)*(1 - 2*x)*(1 + 2*x)). - Colin Barker, Jan 22 2017

MAPLE

a:=proc(n) option remember; if n=0 then 2 elif n=1 then 3 elif n=2 then 6 else a(n-1)+4*a(n-2)-4*a(n-3); fi; end: seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 21 2017

MATHEMATICA

LinearRecurrence[{1, 4, -4}, {2, 3, 6}, 40] (* Harvey P. Dale, Sep 04 2018 *)

PROG

(MAGMA)[(2/3)+(5/4)*2^n+(1/12)*(-2)^n: n in [0..40]]; // Vincenzo Librandi, Aug 09 2011

(PARI) Vec((2 + x - 5*x^2) / ((1 - x)*(1 - 2*x)*(1 + 2*x)) + O(x^40)) \\ Colin Barker, Jan 22 2017

CROSSREFS

Cf. A097164.

Sequence in context: A049889 A014270 A127076 * A049527 A074371 A032202

Adjacent sequences:  A137205 A137206 A137207 * A137209 A137210 A137211

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Mar 05 2008

EXTENSIONS

Extended by Vincenzo Librandi, Aug 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 23:15 EST 2019. Contains 319251 sequences. (Running on oeis4.)