login
A137205
Numbers k such that abundance(k) + abundance(k+1) = 2.
0
215, 923, 944, 1455, 2379, 5355, 6467, 6623, 14099, 23495, 196343, 212795, 1661135, 4070199, 4160919, 4626699, 60464627, 217408415, 248621603, 262792907, 265371335, 613033667, 684241907, 1065360113, 3148946723, 4773647871, 6729842063, 19910536424
OFFSET
1,1
COMMENTS
The abundance of k is defined as the difference between the sum of the aliquot parts of k and k itself.
FORMULA
{k: A033880(k) + A033880(k+1) = 2}. - R. J. Mathar, Apr 01 2008
EXAMPLE
abundance(215) = (sum of aliquot parts of 215) - 215 = 49 - 215 = -166;
abundance(216) = (sum of aliquot parts of 216) - 216 = 384 -216 = 168;
so abundance(215) + abundance(216) = 2.
MAPLE
with(numtheory): a:=proc(n) if sigma(n)+sigma(n+1)-4*n=4 then n end if end proc: seq(a(n), n=1..100000); # Emeric Deutsch, Apr 02 2008
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] + DivisorSigma[1, # + 1] - 4 # == 4 &] (* Michael De Vlieger, Feb 02 2019 *)
CROSSREFS
Cf. A033880.
Sequence in context: A193396 A259889 A362201 * A091289 A085754 A232252
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Mar 04 2008
EXTENSIONS
Three more terms from R. J. Mathar and Emeric Deutsch, Apr 01 2008
a(14)-a(28) from Donovan Johnson, Apr 27 2008
STATUS
approved