login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136793 Number of unlabeled rooted trees with n 4-colored nodes. 4
4, 16, 104, 752, 5996, 50512, 444256, 4027360, 37383044, 353486320, 3393093696, 32976302800, 323839605124, 3208549483216, 32033691247528, 321955764477936, 3254812520854980, 33075467402453872, 337670437247448728, 3461635652745799136, 35620112071990294784 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

LINKS

Table of n, a(n) for n=1..21.

L. Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 (2018)

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

Shifts left and divides by 4 under EULER transform. a(n) = A136794(n)*2 = A052763(n)*4.

MAPLE

with(numtheory):

a:= proc(n) option remember; `if`(n<2, n*4, (add(add(d*

      a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))

    end:

seq(a(n), n=1..25);  # Alois P. Heinz, May 16 2014

MATHEMATICA

a[1] = 4; a[n_] := a[n] = Sum[ Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1); Table[a[n], {n, 1, 25}] (* Jean-Fran├žois Alcover, Feb 24 2015, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A094637 A203716 A330537 * A274889 A009630 A318695

Adjacent sequences:  A136790 A136791 A136792 * A136794 A136795 A136796

KEYWORD

nonn

AUTHOR

Christian G. Bower, Jan 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 20:36 EST 2020. Contains 330987 sequences. (Running on oeis4.)