%I #12 Aug 31 2016 09:06:59
%S 1,2,6,17,48,135,379,1063,2980,8352,23405,65584,183769,514919,1442785,
%T 4042614,11327182,31738101,88928244,249171491,698163131,1956209807,
%U 5481178344,15357920824,43031938457,120572813012,337837515853,946599685919,2652313383105
%N Number of primitive multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
%H Colin Barker, <a href="/A136776/b136776.txt">Table of n, a(n) for n = 1..1000</a>
%H S. Butler and R. Graham, <a href="http://arXiv.org/abs/0801.2597">Enumerating (multiplex) juggling sequences</a>, arXiv:0801.2597 [math.CO], 2008.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-1).
%F G.f.: (x-2*x^2+x^3)/(1-4*x+3*x^2+x^3).
%F a(1)=1, a(2)=2, a(3)=6, a(n) = 4*a(n-1)-3*a(n-2)-a(n-3). - _Harvey P. Dale_, Sep 17 2013
%t Rest[CoefficientList[Series[(x-2x^2+x^3)/(1-4x+3x^2+x^3),{x,0,40}],x]] (* or *) LinearRecurrence[{4,-3,-1},{1,2,6},40] (* _Harvey P. Dale_, Sep 17 2013 *)
%o (PARI) Vec((x-2*x^2+x^3)/(1-4*x+3*x^2+x^3) + O(x^30)) \\ _Colin Barker_, Aug 31 2016
%Y Cf. A136775.
%K nonn,easy
%O 1,2
%A _Steve Butler_, Jan 21 2008