

A136720


Prime quadruples: 2nd term.


1



7, 13, 103, 193, 823, 1483, 1873, 2083, 3253, 3463, 5653, 9433, 13003, 15643, 15733, 16063, 18043, 18913, 19423, 21013, 22273, 25303, 31723, 34843, 43783, 51343, 55333, 62983, 67213, 69493, 72223, 77263, 79693, 81043, 82723, 88813, 97843
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes p such that p2, p+4, and p+6 are prime. Apart from the first term, a(n) = 13 (mod 30).


LINKS

Table of n, a(n) for n=1..37.


EXAMPLE

The four terms in the first quadruple are 5,7,11,13 and in the 2nd 11,13,17,19. The four terms or members of each set must be simultaneously prime.


MATHEMATICA

lst={}; Do[p0=Prime[n]; If[PrimeQ[p2=p0+2], If[PrimeQ[p6=p0+6], If[PrimeQ[p8=p0+8], AppendTo[lst, p2]]]], {n, 12^4}]; lst [From Vladimir Joseph Stephan Orlovsky, Aug 22 2008]


CROSSREFS

Cf. A007530 A090258 A136721.
Sequence in context: A039687 A001544 A202152 * A035030 A046519 A128351
Adjacent sequences: A136717 A136718 A136719 * A136721 A136722 A136723


KEYWORD

easy,nonn


AUTHOR

Enoch Haga, Jan 18 2008


EXTENSIONS

Edited by Charles R Greathouse IV, Oct 11 2009


STATUS

approved



