login
A136636
a(n) = n * C(2*3^(n-1), n) for n>=1.
4
2, 30, 2448, 1265004, 4368213360, 106458751541142, 19173684851378353296, 26413015283743616538733008, 285290979402099025600644272168880, 24601033850235942230699563821233785600080
OFFSET
1,1
COMMENTS
Equals column 1 of triangle A136635.
FORMULA
a(n) ~ 2^n * 3^(n*(n-1)) / (n-1)!. - Vaclav Kotesovec, Jul 02 2016
MAPLE
A136636:=n->n*binomial(2*3^(n-1), n); seq(A136636(n), n=1..10); # Wesley Ivan Hurt, Apr 29 2014
MATHEMATICA
Table[n*Binomial[2*3^(n - 1), n], {n, 10}] (* Wesley Ivan Hurt, Apr 29 2014 *)
PROG
(PARI) {a(n)=n*binomial(2*3^(n-1), n)}
CROSSREFS
Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136637 (row sums), A136638 (antidiagonal sums).
Sequence in context: A158260 A099800 A099929 * A220719 A359665 A030249
KEYWORD
nonn,easy
AUTHOR
STATUS
approved