login
A136612
a(n) = ((prime(n+3) + prime(n+1)) - (prime(n+2) + prime(n))).
2
3, 6, 4, 8, 4, 8, 8, 6, 12, 6, 8, 8, 8, 10, 8, 12, 6, 8, 10, 6, 12, 12, 10, 10, 8, 4, 8, 16, 8, 20, 6, 16, 4, 16, 8, 10, 12, 10, 8, 16, 4, 14, 4, 16, 14, 16, 14, 8, 8, 6, 16, 8, 16, 12, 8, 12, 6, 8, 14, 16, 14, 16, 8, 16, 10, 24, 8, 14, 8, 12, 12, 14, 10, 12, 12, 10, 16, 14, 10, 20, 4, 16, 6
OFFSET
1,1
COMMENTS
a(n) is the sum of two prime gaps, thus a(n) >= 4 for n > 1. Conjecturally a(n) << log^2 n (probably with constant around 2). - Charles R Greathouse IV, Aug 25 2014
LINKS
FORMULA
a(n)=A001223(n)+A001223(n+2). - R. J. Mathar, Apr 21 2008
EXAMPLE
2 + 5 = 7
3 + 7 = 10
5 + 11 = 16
7 + 13 = 20
...
so the sequence is: 10 - 7 = 3,
16 - 10 = 6,
20 - 16 = 4,
28 - 20 = 8,
...
MAPLE
A001223 := proc(n) ithprime(n+1)-ithprime(n) ; end: A136612 := proc(n) A001223(n)+A001223(n+2) ; end: seq(A136612(n), n=1..100) ; # R. J. Mathar, Apr 21 2008
MATHEMATICA
#[[4]]+#[[2]]-#[[3]]-#[[1]]&/@Partition[Prime[Range[90]], 4, 1] (* Harvey P. Dale, May 15 2013 *)
PROG
(PARI) a(n)=my(p=prime(n), q=nextprime(p+1), r=nextprime(q+1)); nextprime(r+1)-r + q-p \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
Sequence in context: A222409 A093064 A197568 * A004546 A197255 A154890
KEYWORD
easy,nonn
AUTHOR
Odimar Fabeny, Apr 14 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Apr 21 2008
STATUS
approved