login
A136610
Number of odd digits in Fibonacci numbers.
2
0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 4, 1, 2, 2, 2, 5, 2, 1, 3, 5, 3, 5, 3, 1, 3, 4, 4, 3, 3, 5, 5, 4, 3, 6, 5, 4, 5, 5, 7, 7, 7, 4, 5, 4, 5, 6, 9, 5, 6, 8, 6, 7, 4, 6, 7, 8, 7, 7, 9, 7, 7, 5, 7, 10, 8, 6, 10, 8, 9, 6, 10, 8, 6, 6
OFFSET
0,8
EXAMPLE
1597 is a Fibonacci number and has four odd digits in it.
MAPLE
nodss := proc(n) local dgs, d; dgs := convert(n, base, 10) ; add( d mod 2, d=dgs) ; end: A136610 :=proc(n) nodss(combinat[fibonacci](n)) ; end: seq( A136610(n), n=0..80) ; # R. J. Mathar, Jul 08 2009
CROSSREFS
Cf. A000045.
Cf. A060384, A085855. - R. J. Mathar, Jul 08 2009
Sequence in context: A162320 A241911 A335221 * A377365 A326371 A226304
KEYWORD
nonn,base
AUTHOR
Parthasarathy Nambi, May 11 2008
EXTENSIONS
a(13) corrected and more terms added by R. J. Mathar, Jul 08 2009
STATUS
approved