login
A136539
Numbers n such that n=6*phi(n)-sigma(n).
6
76, 1264, 327424, 5241856, 83881984, 1342160896, 343597121536
OFFSET
1,1
COMMENTS
If 5*2^n-1 is prime (that is, n is in A001770) then m = 2^n*(5*2^n-1) is in the sequence. Proof: 6*phi(m)-sigma(m) = 6*2^(n-1)*(5*2^n-2) -(2^(n+1)-1)*5*2^n = 30*2^(2n-1)-6*2^n-5*2^(2n+1)+5*2^n = 5*2^(2n)-2^n = 2^n(5*2^n-1) = m.
The first seven terms of the sequence are of such form, with n=2, 4, 8, 10, 12, 14, 18. Are all terms of the sequence of this form?
a(8) > 10^12. - Giovanni Resta, Nov 03 2012
FORMULA
a(n) = 2^k*(5*2^k-1) = A084213(k+1) with k = A001770(n), for n = 1,...,7. - M. F. Hasler, Nov 03 2012
EXAMPLE
6*phi(76)-sigma(76)=6*36-140=76 so 76 is in the sequence.
MATHEMATICA
Do[If[n==6*EulerPhi[n]-DivisorSigma[1, n], Print[n]], {n, 85000000}]
CROSSREFS
Sequence in context: A156396 A233365 A264627 * A267797 A163710 A293310
KEYWORD
more,nonn
AUTHOR
Farideh Firoozbakht, Jan 05 2008, Feb 01 2008
EXTENSIONS
a(7) from Giovanni Resta, Nov 03 2012
STATUS
approved