login
Triangle read by rows: T(n,k) = greatest common divisor of n-th and k-th composite number, 1<=k<=n.
2

%I #7 Nov 15 2021 04:37:20

%S 4,2,6,4,2,8,1,3,1,9,2,2,2,1,10,4,6,4,3,2,12,2,2,2,1,2,2,14,1,3,1,3,5,

%T 3,1,15,4,2,8,1,2,4,2,1,16,2,6,2,9,2,6,2,3,2,18,4,2,4,1,10,4,2,5,4,2,

%U 20,1,3,1,3,1,3,7,3,1,3,1,21,2,2,2,1,2,2,2,1,2,2,2,1,22,4,6,8,3,2,12,2,3,8,6,4,3,2,24

%N Triangle read by rows: T(n,k) = greatest common divisor of n-th and k-th composite number, 1<=k<=n.

%F T(n,k) = A050873(A002808(n),A002808(k));

%F A073783(n) = T(n-1,n) for n>1;

%F A002808(n) = T(n,n).

%e 4;

%e 2, 6;

%e 4, 2, 8;

%e 1, 3, 1, 9;

%e 2, 2, 2, 1, 10;

%e ...

%t nmax = 14;

%t A002808 = Select[Range[FindRoot[n == nmax + PrimePi[n] + 1, {n, nmax, 2nmax}][[1, 2]] // Ceiling], CompositeQ];

%t T[n_, k_] := GCD[A002808[[n]], A002808[[k]]];

%t Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 15 2021 *)

%Y Cf. A002808, A050873, A073783.

%K nonn,tabl

%O 1,1

%A _Reinhard Zumkeller_, Jan 03 2008