This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136524 a(n) = 2^n*(2^n + n)^(n-1). 1
 1, 2, 24, 968, 128000, 59973152, 107564800000, 774840978000000, 22880602349081985024, 2779532441951756299960832, 1383517973370847653192530395136, 2804745232514434754535719279455029248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA E.g.f.: A(x) = Sum_{n>=0} 2^(n^2) * W(2^n*x)^n * x^n/n! ; also, a(n)/n! = coefficient of x^n in W(x)^(2^n) where W(x) = LambertW(-x)/(-x). EXAMPLE E.g.f: A(x) = 1 + 2x + 24x^2/2! + 968x^3/3! + 128000x^4/4! +... A(x) = 1 + 2*W(2x)*x + 2^4*W(4x)^2*x^2/2! + 2^9*W(8*x)^3*x^3/3! +... W(x) = LambertW(-x)/(-x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! +...+ (n+1)^(n-1)*x^n/n! +... This is a special application of the following identity. Let F(x) be a formal power series in x such that F(0)=1, then Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) . The e.g.f. of this sequence is derived as follows. Let F(x) = W(x) = LambertW(-x)/(-x); since log( W(x) ) = x*W(x) and since W(x)^m = Sum_{n>=0} m*(m+n)^(n-1)*x^n/n! then Sum_{n>=0} m^n * q^(n^2) * W(q^n*x)^(b+n) * x^n/ n! = Sum_{n>=0} (m*q^n + b) * (m*q^n + b + n)^(n-1) * x^n. PROG (PARI) {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)); n!*polcoeff( (W+x*O(x^n))^(2^n), n)} CROSSREFS Cf. A136525. Sequence in context: A012228 A062029 A122551 * A213984 A268311 A307157 Adjacent sequences:  A136521 A136522 A136523 * A136525 A136526 A136527 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 09:28 EDT 2019. Contains 323390 sequences. (Running on oeis4.)