This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136458 Triangle of coefficients of the characteristic polynomial of an bi-orthogonnal n X n matrix: h(i,j)=If[i - j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]];i,j<=n; example n=4: {{1, 0, -1, 0}, {0, 1, 0, -1}, {-1, 0, 1, 0}, {0, -1, 0, 1}}. 0
 1, 1, -1, 0, -2, 1, 1, -3, 3, -1, 0, 0, 4, -4, 1, 1, -5, 10, -10, 5, -1, 0, 0, 0, -8, 12, -6, 1, 1, -7, 21, -35, 35, -21, 7, -1, 0, 0, 0, 0, 16, -32, 24, -8, 1, 1, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 0, 0, 0, 0, -32, 80, -80, 40, -10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1} These matrices are related to binary digital signal processing. REFERENCES http://www.ee.cityu.edu.hk/~eekwwong/ee40214/chapter3.pdf LINKS FORMULA If[i - j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]], EXAMPLE {1}, {1, -1}, {0, -2, 1}, {1, -3, 3, -1}, {0, 0, 4, -4, 1}, {1, -5, 10, -10, 5, -1}, {0, 0, 0, -8, 12, -6, 1}, {1, -7, 21, -35, 35, -21, 7, -1}, {0, 0, 0, 0, 16, -32, 24, -8, 1}, {1, -9, 36, -84, 126, -126, 84, -36, 9, -1}, {0, 0, 0, 0, 0, -32, 80, -80, 40, -10, 1} MATHEMATICA Clear[B] B[n_] := Table[Table[If[i -j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[B[n], x], x], {n, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[B[n], x], x]], {n, 1, 10}]]; CROSSREFS Sequence in context: A108482 A124750 A275865 * A048805 A204015 A216210 Adjacent sequences:  A136455 A136456 A136457 * A136459 A136460 A136461 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 23:30 EDT 2019. Contains 328103 sequences. (Running on oeis4.)