login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136456 Characteristic polynomials of the Inverse Beta function based matrices as a triangle of Integer coefficients: (lower triangular form: Cornelius-Schultz form) n*IM(i,j)=Inverse(if[i>=,1/Gamma(i,j),0));i.j>=n. 0
1, 0, 1, 1, -2, 1, 6, -13, 8, -1, 720, -1566, 973, -128, 1, 3628800, -7893360, 4905486, -646093, 5168, -1, 1316818944000, -2864346105600, 1780110653040, -234459133326, 1876009933, -368048, 1, 52563198423859200000, -114335531944833024000, 71056323779613177600, -9358860113257929840 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Based on:

Beta[n,m]=Gamma[n]*Gamma[m]/Gamma[n+m]=Integate[x^n&(1-x)^m,{x,0,1}];

f[x,n]=x^n/Gamma[n]

g[x,n]=(1-x)^n/Gamma[n]

Integral:

Matrix[n,m]=Integrate[f[x,n]*g[x,m],{x,0,1}]=1/Gamma[n,m]

IM[n]=n*Inverse[Matrix[n,m]]

These matrices are made to be like the transorthogonal or simplex coding :

-1/(2^n-1)

1/Gamma[n+m] is mostly less than that.

These results get really big really fast.

The Cornelius -Schultz lower triangular form makes them smaller and the

row sums are mostly zero.

The row sums are:

{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

REFERENCES

Weisstein, Eric W. "Beta Function." http : // mathworld.wolfram.com/BetaFunction.html

LINKS

Table of n, a(n) for n=1..32.

FORMULA

M(i,j)=if[i>=,1/Gamma(i,j),0);i,j<=n IM(i,j)=Inverse(M(i,j))

EXAMPLE

{1},

{0, 1},

{1, -2, 1},

{6, -13, 8, -1},

{720, -1566, 973, -128, 1},

{3628800, -7893360, 4905486, -646093, 5168, -1}

MATHEMATICA

M[w_] := Table[Table[If[n - m == 0 && n == 0 && m == 0, 1, If[n >= m, 1/Gamma[n + m], 0]], {n, 0, w}], {m, 0, w}]; TableForm[Table[M[w], {w, 0, 5}]; ] TableForm[Table[Inverse[M[w]], {w, 0, 5}]]; IM[w_] := Inverse[M[w]]; Join[{1, x}, Table[CharacteristicPolynomial[IM[n], x], {n, 1, 10}]]; a = Join[{{1}, {0, 1}}, Table[CoefficientList[CharacteristicPolynomial[IM[ n], x], x], {n, 1, 10}]]; Flatten[a] Join[{1, 1}, Table[Apply[Plus, CoefficientList[ CharacteristicPolynomial[IM[n], x], x]], {n, 1, 10}]];

CROSSREFS

Sequence in context: A128534 A002562 A218492 * A123968 A282329 A210654

Adjacent sequences:  A136453 A136454 A136455 * A136457 A136458 A136459

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Mar 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 11:05 EST 2018. Contains 318148 sequences. (Running on oeis4.)