This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136440 Sum of heights of all 2-watermelons with wall of length 2*n. 0
 3, 11, 60, 406, 3171, 27411, 255617, 2528613, 26224097, 282706396, 3147801820, 36022733951, 422047425238, 5046771514478, 61438059222438, 759851375725606, 9530872096367508, 121063493728881999, 1555352365759798758 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Consider the set of all pairs of nonintersecting Dyck excursions of length 2*n (nonnegative walks with jumps -1,+1). The lower path begins and ends at 0; the upper path begins and ends at 2. a(n) is the sum of heights of all such upper-Dyck excursions. LINKS M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, Elec. J. Combin. 14 (2007) R64 MATHEMATICA c[n_] := 6*(2*n)!*(2*n+2)!/(n!*(n+1)!*(n+2)!*(n+3)!) s[n_, a_] := Sum[If[k < 1, 0, DivisorSigma[0, k]*Binomial[2*n, n+a-k]/Binomial[2*n, n]], {k, a-n, a+n}] t[n_, a_, b_] := Sum[If[(j < 1) || (k < 1), 0, DivisorSigma[0, GCD[j, k]]*Binomial[2*n, n+a-j]*Binomial[2*n, n+b-k]/Binomial[2*n, n]^2], {j, a-n, a+n}, {k, b-n, b+n}] f[n_] := (n^2+5*n+6)*(s[n, -3]+s[n, 3])-(6*n^2+18*n)*(s[n, -2]+s[n, 2])+(15*n^2+27*n+6)*(s[n, -1]+s[n, 1])-(20*n^2+28*n+24)*s[n, 0] g[n_] := t[n, -2, -2]-t[n, -1, -3]-2*t[n, -1, -2]+t[n, -1, -1]+2*t[n, -1, 0]-t[n, -1, 3]+2*t[n, 0, -3]-4*t[n, 0, 0]+2*t[n, 0, 3]-t[n, 1, -3]-2*t[n, 1, -2]+2*t[n, 1, -1]+2*t[n, 1, 0]+t[n, 1, 1]-t[n, 1, 3]+2*t[n, 2, -2]-2*t[n, 2, -1]-2*t[n, 2, 1]+t[n, 2, 2] h[n_] := ((n+1)*(n+2)/(12*(2*n+1)))*( (n+1)*(n+2)*(n+3)*g[n]+f[n] ) - 1 a[n_] := h[n]*c[n] CROSSREFS Cf. A005700, A078920. Sequence in context: A152796 A007807 A075201 * A303871 A231344 A007146 Adjacent sequences:  A136437 A136438 A136439 * A136441 A136442 A136443 KEYWORD nonn AUTHOR Steven Finch, Apr 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 09:36 EST 2019. Contains 329953 sequences. (Running on oeis4.)