login
A136425
a(n) = floor((x^n-(1-x)^n)/sqrt(7)+1/2) where x = (sqrt(7)+1)/2.
0
1, 1, 3, 4, 8, 14, 25, 46, 84, 153, 279, 509, 927, 1691, 3082, 5618, 10241, 18667, 34028, 62029, 113070, 206113, 375719, 684889, 1248467, 2275800, 4148501, 7562201, 13784953, 25128255, 45805684, 83498067, 152206593, 277453693, 505763582
OFFSET
1,3
COMMENTS
This is analogous to the formula for the n-th Fibonacci number. Even before truncation, these numbers are rational and the decimal part always ends in 5. For x = (sqrt(7)+1)/2, a(n)/a(n-1) -> x. The general form of x is (sqrt(r)+1)/2, r=1,2,3..
FORMULA
Asymptotically a(n) ~ A083099(n)/2^(n-1). - R. J. Mathar, Apr 20 2008
a(n) = floor(b(n)/2^n) where b(n) = 2*A083099(n)+2^(n-1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n, r) = for(m=1, n, print1(fib(m, r)", ")) fib(n, r) = x=(sqrt(r)+1)/2; floor((x^n-(1-x)^n)/sqrt(r)+.5)
CROSSREFS
Sequence in context: A023558 A170902 A000205 * A331330 A005907 A049866
KEYWORD
nonn
AUTHOR
Cino Hilliard, Apr 01 2008
EXTENSIONS
Definition corrected by R. J. Mathar, Apr 20 2008
STATUS
approved