This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136415 Numbers n such that a type-3 Gaussian normal basis over GF(2^n) exists. 6
 4, 6, 12, 14, 20, 22, 46, 52, 54, 60, 70, 76, 92, 94, 116, 124, 126, 140, 166, 174, 180, 182, 204, 206, 214, 220, 230, 236, 244, 252, 262, 276, 284, 286, 292, 294, 302, 332, 340, 350, 356, 364, 372, 374, 390, 404, 412, 430, 460, 484, 494, 510, 516, 526, 532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n,(p-1)/ord(2 mod p))==1. Type-1 basis correspond to sequence A071642, type-2 basis to A054639. LINKS Joerg Arndt, Mar 31 2008, Table of n, a(n) for n = 1..201 Joerg Arndt, Matters Computational (The Fxtbook), section 42.9  "Gaussian normal bases", pp.914-920 EXAMPLE 12 is in the list because 3*12+1=37 is prime and the index of 2 mod 37 (==36/ord(2 mod 37)==1, 2 is a generator mod 37) is coprime to 12. PROG (PARI) gauss_test(n, t)= { /* test whether a type-t Gaussian normal basis exists for GF(2^n) */   local( p, r2, g, d );   p = t*n + 1;   if ( !isprime(p), return( 0 ) );   if ( p<=2, return( 0 ) );   r2 = znorder( Mod(2, p) );   d = (p-1)/r2;   g = gcd(d, n);   return ( if ( 1==g, 1, 0) ); } /* generate this sequence: */ t=3; ct=1; for(n=1, 10^7, if(gauss_test(n, t), print1(n, ", "); ct+=1; if(ct>200, break()))) CROSSREFS Cf. A071642, A054639. Sequence in context: A140599 A282280 A047406 * A247456 A266383 A217948 Adjacent sequences:  A136412 A136413 A136414 * A136416 A136417 A136418 KEYWORD nonn AUTHOR Joerg Arndt, Mar 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.