%I #12 Jul 02 2019 14:13:07
%S 1,-2,2,1,-5,4,4,-12,8,-1,13,-28,16,-6,38,-64,32,1,-25,104,-144,64,8,
%T -88,272,-320,128,-1,41,-280,688,-704,256,-10,170,-832,1696,-1536,512,
%U 1,-61,620,-2352,4096,-3328,1024,12,-292,2072,-6400,9728,-7168,2048
%N Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,2}(x) with 0 omitted (exponents in increasing order).
%C If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
%C Let n>=2 and k be of the same parity. Consider a set X consisting of (n+k)/2-2 main blocks of the size 2 and an additional block of the size 2, then (-1)^((n-k)/2)a(n,k) is the number of n-2-subsets of X intersecting each main block.
%H Michael De Vlieger, <a href="/A136388/b136388.txt">Table of n, a(n) for n = 2..10199</a> (rows 2 <= n <= 200, flattened).
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic">Two enumerative functions</a>.
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Janjic/janjic19.html">On a class of polynomials with integer coefficients</a>, JIS 11 (2008) 08.5.2.
%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%F If n>=2 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-2, i)*binomial(n+k-2-2*i, n-2), i=0..(n+k)/2-2) and a(n,k)=0 if n and k are of different parity.
%e Rows are (1),(-2,2),(1,-5,4),(4,-12,8),(-1,13,-28,16),...
%e since P_{2,2}=x^2, P_{3,2}=-2x+2x^3, P_{4,2}=1-5x^2+4x^4,...
%p if modp(n-k, 2)=0 then a[n,k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-2, i)*binomial(n+k-2-2*i, n-2), i=0..(n+k)/2-2); end if;
%t Rest@ Flatten@ Table[If[SameQ @@ Mod[{n, k}, 2], (-1)^((n - k)/2)*Sum[(-1)^i*Binomial[(n + k)/2 - 2, i]*Binomial[n + k - 2 - 2 i, n - 2], {i, 0, (n + k)/2 - 2}], 0], {n, 2, 13}, {k, Boole@ OddQ@ n, n, 2}] (* _Michael De Vlieger_, Jul 02 2019 *)
%Y Cf. A008310, A053117.
%K sign,tabf
%O 2,2
%A _Milan Janjic_, Mar 30 2008, entry revised Apr 05 2008