login
Quotient obtained when A037097(n) is considered as a GF(2)[X]-polynomial and it is divided by (x + 1) ^ A000225(n-1) (= A051179(n-2)).
6

%I #4 Mar 31 2012 14:02:29

%S 4,8,352,3728,7269662752,761166466256046848,

%T 390022035611646394530728097023856870592,

%U 91600670557117582933643002658167825054614175029432880501373395030525438396928,13417853484388319477475698658536993288839029124735549539652836318808118017743106800015257954250357092148394821846783842030516713870361254572407216621548672

%N Quotient obtained when A037097(n) is considered as a GF(2)[X]-polynomial and it is divided by (x + 1) ^ A000225(n-1) (= A051179(n-2)).

%H A. Karttunen, <a href="/A136386/b136386.txt">Table of n, a(n) for n = 3..13</a>

%H A. Karttunen, <a href="/A036284/a036284.c.txt">C program for computing this sequence</a>

%Y A136387 shows the same sequence in binary base. Cf. A037096, A037097, A136380, A136382, A136384.

%K nonn,base

%O 3,1

%A _Antti Karttunen_, Dec 29 2007