login
Quotient obtained when A036284(n) is considered as a GF(2)[X]-polynomial and it is divided by (x^3 + 1) ^ A000225(n-1).
6

%I #4 Mar 31 2012 14:02:29

%S 24,160,11968,49657088,837028380268032,237269922100748727235760269312,

%T 18811253173629696438994877569412700111469395859003555753984,

%U 118178826602781220665226658680265194908312590801831513776333330179329649495708436476846379030238467286212637486694400

%N Quotient obtained when A036284(n) is considered as a GF(2)[X]-polynomial and it is divided by (x^3 + 1) ^ A000225(n-1).

%H A. Karttunen, <a href="/A136380/b136380.txt">Table of n, a(n) for n = 1..11</a>

%H A. Karttunen, <a href="/A036284/a036284.c.txt">C program for computing this sequence</a>

%Y a(n) = 4*A136382(n) = 2*A048724(A136384(n)). A136381 shows the same sequence in octal base. Cf. A036284.

%K nonn,base

%O 1,1

%A _Antti Karttunen_, Dec 29 2007