

A136357


Increasing sequence obtained by union of two sequences A136354 and {b(n)}, where b(n) is the smallest composite number m such that m+1 is prime and the set of distinct prime factors of m consists of the first n primes.


3



4, 6, 9, 15, 30, 105, 210, 2310, 3465, 15015, 120120, 765765, 4084080, 33948915, 106696590, 334639305, 892371480, 3234846615, 71166625530, 100280245065, 200560490130, 3710369067405, 29682952539240, 1369126185872445
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is different from A070826 and A118750.


LINKS

Table of n, a(n) for n=1..24.


EXAMPLE

a(4)=15 because k=2 with prime factors 3 and 5 and 15 is followed by 17, prime;
a(5)=30 because k=3 with prime factors 2, 3, 5 and 30 is followed by 31, prime.


MATHEMATICA

a[n_]:=(c=Product[Prime[k], {k, n}]; For[m=1, !(!PrimeQ[c*m]&&PrimeQ[c*m+1]&& Length[FactorInteger[c*m]]==n), m++ ]; c*m);
b[n_]:=(c=Product[Prime[k], {k, 2, n+1}]; For[m=1, !(!PrimeQ[c(2*m1)]&&PrimeQ[c(2*m1)+2]&&Length[FactorInteger [c(2*m1)]]==n), m++ ]; c(2*m1));
Take[Union[Table[a[k], {k, 24}], Table[b[k], {k, 24}]], 24] (* Farideh Firoozbakht, Aug 13 2009 *)


CROSSREFS

Cf. A136349A136356, A136358, A070826, A118750.
Sequence in context: A183978 A118696 A065856 * A136356 A136358 A115665
Adjacent sequences: A136354 A136355 A136356 * A136358 A136359 A136360


KEYWORD

easy,nonn


AUTHOR

Enoch Haga, Dec 25 2007


EXTENSIONS

Edited, corrected and extended by Farideh Firoozbakht, Aug 13 2009


STATUS

approved



