login
A136327
Numbers k such that binomial(2k-1, k-1) == 1 (mod k).
4
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
OFFSET
1,1
COMMENTS
k such that A099905(k) = 1.
Contains primes, squares of odd primes and cubes of primes >= 5.
See A228562 for terms that are neither primes nor prime powers. [Joerg Arndt, Aug 27 2013]
LINKS
McIntosh, R. J. (1995), On the converse of Wolstenholme's theorem, Acta Arithm., LXXI.4 (1995), 381-389.
EXAMPLE
a(3) = 5 because binomial(9, 4) = 126 == 1 (mod 5).
MATHEMATICA
Select[Range[300], Mod[Binomial[2# - 1, # - 1], #] == 1 &] (* Alonso del Arte, May 11 2014 *)
PROG
(PARI) isok(n) = (binomial(2*n-1, n-1) % n) == 1; \\ Michel Marcus, Aug 26 2013
CROSSREFS
Cf. A099905.
Sequence in context: A325395 A070566 A325623 * A095415 A326149 A301987
KEYWORD
nonn
AUTHOR
Franz Vrabec, Mar 26 2008
STATUS
approved