login
A136304
Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
9
1, 2, 5, 14, 40, 116, 344, 1047, 3273, 10500, 34503, 115838, 396244, 1377221, 4851665, 17285662, 62173297, 225424527, 822919439, 3021713140, 11151957809, 41340655956, 153853915410, 574593145517, 2152679745351, 8087904580883, 30466311814036, 115036597198845
OFFSET
0,2
COMMENTS
Previous name was: Transform of A000108 by the T_{0,0} transformation (see link).
LINKS
FORMULA
G.f.: (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
Conjecture: (n+1)*a(n) + (-8*n+1)*a(n-1) + 3*(7*n-8)*a(n-2) + (-23*n+49)*a(n-3) + (13*n-32)*a(n-4) + 2*(-2*n+7)*a(n-5) = 0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{j=0..n} A034943(j+1)*A000108(n-j). - G. C. Greubel, Apr 19 2021
MATHEMATICA
A034943[n_]:= A034943[n]= Sum[Binomial[n+k-1, 3*k], {k, 0, n/2}];
Table[Sum[A034943[j+1]*CatalanNumber[n-j], {j, 0, n}], {n, 0, 35}] (* G. C. Greubel, Apr 19 2021 *)
PROG
(Magma)
A034943:= func< n | (&+[Binomial(n+j-1, 3*j): j in [0..Floor(n/2)]]) >;
[(&+[A034943(j+1)*Catalan(n-j): j in [0..n]]): n in [0..35]]; // G. C. Greubel, Apr 19 2021
(Sage)
def A034943(n): return sum(binomial(n+j-1, 3*j) for j in (0..n//2))
[sum(A034943(j+1)*catalan_number(n-j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Apr 19 2021
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Mar 22 2008
EXTENSIONS
New name using g.f., Joerg Arndt, Apr 20 2021
STATUS
approved