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Introduction 
 
In "Secret Santa", people draw names from a hat to see who they will buy a present for. If 
a person picks his own name, he picks another name and throws his own name back in.  
If the last person draws his own name, there's a problem.  What is that probability as a 
function of the number of people participating?  Said another way, this series represents 
the numerators of a ratio, the denominator being (n-1)!^2 (A001044), in which the ratio 
gives the exact probability that the last person draws his own name from a set of names, 
given that each other person in the set has previously drawn randomly and in succession, 
but was not allowed to “keep” his own name.  
 
The solution is most easily explained by way of example.  Let’s say there are 5 people, 
named 1-5.  For the last person to choose “5,” the first four people must draw 1-4 as a 
derangement, and there 9 ways of doing so: (sequence A047920) 
 
1 
1 0 
2 1 1 
6 4 3 2 
24 18 14 11 9   
 
Reading the bottom two rows, of the 24 possible arrangements, 6 of 24 are not possible 
because person 1 puts his own name back in. Similarly, 4 of the 18 remaining are 
eliminated by person 2, and 3 of 14 remaining are eliminated by person 3, 2 of 11 by 
person 4, and 9 “derangements” succeed getting through the first 4 names, leading to 9 
ways for the 5th person to get his own name.  
 
But what is the probability of each of these 9 derangements, or sequences?  It boils down 
to understanding how many choices exist at each successive draw.  The first person (i=1) 
can draw from 4 possibilities (N-i, namely, 2,3,4,5).  The second person nominally has 3 
to choose from (N-i, i=2), unless the first person drew number 2, in which case person 2 
may draw 4 possibilities (1,3,4,5, or N-i+1). Similarly, the 3rd person has 2 or 3 to draw 
from, the 4th has 1 or 2, and the last person has 0 or 1.  (0 choices means he’s forced to 
choose his own name, which is “the problem.”) 
 
Continuing with this example, the probability of sequence 2,1,4,3,5 can be determined as 
follows: 
 1st person: “2” is drawn from 4 possibilities (2,3,4,5 / 1 not yet taken) 
 2nd person: “1” is drawn from 4 possibilities (1,3,4,5 / 2 already taken) 
 3rd person: “4” is drawn from 2 possibilities (4,5 / 1-2 taken, 3 not yet taken) 
 4th person: “3” is drawn from 2 possibilities (3,5 / 1, 2, and 4 already taken) 
 5th person: “5” is forced (5 not yet taken) 
…with probability 1/4 * 1/4 * 1/2 * 1/2 = 1/64.  This will be better represented as 9/576, 
because the LCM of all sequences is 576, or (N-1)!^2. 
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There is another sequence with the same probability, namely 2, 4, 1, 3, 5. It’s the same 
because in both sequences, 2 is drawn before 2’s turn, and 4 is drawn before 4’s turn, but 
1, 3 and 5's number is not drawn before their turns, respectively.  
So, if there are N people, at the ith turn (i = 1..N), person i has either (N-i) or (N-i+1) 
choices, depending on whether his own name is chosen yet.  A way to represent the 
underlying logic of the two cases above is “01010,” where a 0 indicates that the person’s 
number is not yet drawn, and a 1 indicates it is.   
 
For the cases of interest, in which the Nth person is forced to choose his own name, the 
last digit of this pattern is therefore 0, by definition.  Similarly, the 1st digit must be a 0, 
since no numbers are yet chosen.  And also, the second to last digit must be a 1.  So all 
the “problem” patterns start with 0 and end with 10. 
 
Using the example of 5 people, the 2nd and 3rd digits can each be a 0 or 1, creating 4 
target patterns: 
 0-00-10  
 0-01-10   
 0-10-10  
 0-11-10   
 
A simple way to calculate the probability of any sequence with such a patterns is: 
 01010  (pattern) 
 43210  (nominal number of choices per position) 
 44220  (add the above two together for total choices per position) 
Multiplying the non-zero digits together (4x4x2x2=64) gives 64, as above. Using 576 as 
the denominator, the numerators become {12, 8, 9, 6}.  This is the sequence probability. 
 
So, the probability of any sequence of a given pattern is: 
 0-00-10 12 / 576 
 0-01-10  8 / 576 
 0-10-10 9 / 576 
 0-11-10 6 / 576 
 
So for N=5, the 9 derangements must be distributed over these 4 patterns. By 
enumeration, that distribution is shown to be: 
 0-00-10 1 sequence 
 0-01-10 5 sequences 
 0-10-10 2 sequences 
 0-11-11 1 sequence 
   9 total sequences. 
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In the list above, let’s call {1, 5, 2, 1} the sequence frequency. The length of this vector is 
always 2^(N-3), as a direct consequence of the process being followed. A direct 
calculation of these frequency vectors for the first few N is shown in the following table: 
 

People: 3 4 5 6 7
Frequencies: 1 1 1 1 1
  1 5 13 29
   2 6 14
   1 13 73
    2 6
    6 42
    2 18
    1 29
     2
     18
     8
     14
     2
     6
     2
     1

Table 1: Sequence Frequencies, A136301 
 
Summarizing, for N=5, there is 1 case of 0-00-10 at probably 12/576, 5 of 0-01-10 at 
8/576, 2 of 0-10-10 at 9/576, and 1 of 0-11-10 at 6/576. The total probability then that 
person 5 gets his own name is the sum of the frequencies of each pattern times the 
probability defined by each pattern, or {1,5,2,1} * {12,8,9,6} / 576, or  76 / 576.   
 
Listing just the numerators of the probability ratios (sequence probability): 
 

People: 3 4 5 6 7
Case 0 1 3 12 60 360
Case 1  2 8 40 240
Case 2   9 45 270
3   6 30 180
4    48 288
5    32 192
6    36 216
7    24 144
8     300
9     200
10     225
11     150
12     240
13     160
14     180
15     120

Table 2: Sequence Probability 
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Each value in Table 2: Sequence Probability can be determined by its associated pattern, 
as already shown.  As a second example, for N=7, the pattern 0110010, or 0-1100-10, is 
represented above in column 7 row 12 (binary 1100), indicating that each case of that 
pattern has probability 240 / 6!^2, or 240 / 518400. 
 
But the frequency table which indicates how many sequences have this pattern is more 
tricky, and fascinating.  But first, back to answer the original question… 
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A136300 
1, 0, 1, 5, 76, 1624, 52116, 2298708, 133929216, 9961180416, 921248743680, 
103715841415680, 13967643016085760, 2217449301162071040, 
409861043056032503040, 87262626872384643052800,  
21202798521768886355558400, 5831660090586059239329792000,  
1802587564536011525042697830400, 622185136016136818758343243366400,  
238432510944919530702148531765248000,  
100921590338431208107299482517995520000 
 
Description: In "Secret Santa", people draw names from a hat to determine for whom 
they will buy a present. If a person picks his own name, he picks another name and 
throws his own name back into the hat.  If the last person draws his own name, there's a 
problem.  What is that probability as a function of the number of people participating?  
Said another way, this series represents the numerators of a ratio, the denominator being 
(n-1)!^2 (A001044), in which the ratio gives the exact probability that the last person 
draws his own name from a set of names, given that all other people had previously 
drawn randomly and in succession, but were not allowed to “keep” their own names.  
 
Example: If there is one person, the chance of the last person getting his own name is 
100%, or 1 over 0!^2.  For 2 people, it’s 0 / 1!^2. For 3 people, it’s 1 / 2!^2, creating a 
more interesting case. The possible drawings (sequences) are {2,1,3}, {2,3,1}, and 
{3,1,2}.  All other sequences can't happen because a name is rejected and redrawn. But 
these 3 sequences don't have equal probability, rather, they are 25%, 25%, and 50% 
respectively. Of these, the first is the only one in which the last person draws his own 
name.  In that case, the first person has a 50% chance of drawing a 2 or 3.  If 2, the 
second person has a 50% chance of drawing 1 or 3, for a total outcome probability of 1/4. 
Similarly with 4 people, the chance is 5/36, followed by 76/576 for 5 people, etc.  For the 
case of 5 people, the above equations boil down to this end calculation: {1,5,2,1} * 
{12,8,9,6} summed, or 12 + 40 + 18 + 6 = 76. 
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Formula 
 
The integer sequence can be calculated in Mathematica, shown here to calculate the result 
for up to 22 people: 
 
maxP = 22;  
 
rows = Range[ 1, 2^(nP = maxP-3)  ]; 
 
pasc = Table[ Binomial[ p+1, i] - If[ i >= p, 1,0], {p, nP}, {i, 0, p} ];  
 
sFreq = Table[0,{maxP-1}, {2^nP} ]; sFreq[[2;;maxP-1, 1]] = 1; 
For[ p=1, p<=nP, p++, For[ s=1, s<=p, s++, \ 

rS=Range[2^(s-1)+1, 2^s]; \ 
sFreq[[p+2,rS]]=pasc[[p+1-s,1;;p+2-s]].sFreq[[ s;;p+1,1;;2^(s-1)]] ] ]; 

(* TableForm[ Transpose[ sFreq ] ]*) 
 
sProb = Table[  p+ 2-BitGet[ rows-1, p-1], {p, nP} ] ; 
sProb = Table[ Product[ sProb[[i]], {i, p} ], {p, nP} ]  * Table[ If[ r <= 2^p, 1, 0], {p, nP}, {r,rows} ]; 
 
rslt = Flatten[ Prepend[ Table[ sProb[[p]] . sFreq[[p+2]], {p, nP} ], {1,0,1} ] ] 
prob = N[ rslt / Array[ (#-1)!^2&, maxP ] ] 
 
Notes: 
1) The role of columns / rows is reversed from this paper, for faster calculation  
2) pasc is the modified binomial distribution 
3) sFreq is A136301, Table 1: Sequence Frequencies 
4) sProb is Table 2: Sequence Probability  
5) rslt is the final numerators 
6) prob is the final probabilities 
 
I also have this in excel, which has enough accuracy to calculate the result for up to 12 
people.  Email me at bparsonnet@comcast.net for a copy.  
 
Historical note 
The first time I wrote a program to calculate this sequence was in 1979, using an HP3000 
mainframe computer.  I calculated the result for up to 10 people, taking 7 full days of 
non-stop computing. I still have the print out. The Mathematica version above calculates 
to 22 people, and completes in about 30 seconds on my laptop.  (That increase in 
performance correlates well with Moore’s law, increasing speed by approximately 2^28 
in about 30 years.) 
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Point 1: Inter-column relationships 
 
Here are the frequency vectors for 3 – 8 people.  The excel file has the table calculated 
through 13 people.  In the interest of readability, I will show only sections of that table at 
times. 
 

 3 4 5 6 7 8
0 1 1 1 1 1 1
1  1 5 13 29 61
2   2 6 14 30
3   1 13 73 301
4    2 6 14
5    6 42 186
6    2 18 86
7    1 29 301
8     2 6
9     18 102
10     8 48
11     14 186
12     2 18
13     6 102
14     2 42
15     1 61
16      2
17      42
18      20
19      86
20      8
21      48
22      20
23      30
24      2
25      18
26      8
27      14
28      2
29      6
30      2
31      1

Table 3: Inter-column Relationships 
 
Referencing any value in the frequency table by [r,c] (row, column), then  

[r,c] + [2r+1,c+1] = [4r+2, c+2] 
 

Examples shown above are 1+2=2, 1+5=6, 2+6=8, 13+73=86, and 13+29=42.   
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Point 2: Intra-column relationships   
 

 3 4 5 6 7 8
0 1 1 `1 1 1 1
1  1 5 13 29 61
2   2 6 14 30
3   1 13 73 301
4    2 6 14
5    6 42 186
6    2 18 86
7    1 29 301
8     2 6
9     18 102
10     8 48
11     14 186
12     2 18
13     6 102
14     2 42
15     1 61
16      2
17      42
18      20
19      86
20      8
21      48
22      20
23      30
24      2
25      18
26      8
27      14
28      2
29      6
30      2
31      1

Table 4: Intra-column Relationships 
 
For all rows r where mod(r,4)=1, [r,c] = 2[r+1,c] + [r-1,c].  For examples, 13 = 2*6 + 1, 
or 102=2*48+6, or 102=2*42+18, or 48 = 2*20+8 
 
There are countless more relationships of this type (linear combinations of numbers 
within one column yielding another, repeating at row increments of some power of 2), 
this being the simplest.  A more complicated one is true for mod(r,8)=3, where the row’s 
value = 3 * (r1 + r3) + r-3.  (“r1” means the next row down, etc.)  Eg, column 8 row 19, 
86 = 3*(8+20)+2. 
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Point 3: Value Pairing Pattern 
 

 Row 
(binary) 

1’s 
compliment 

Reversed 
bits

Row 
pairing 8 People

0 00000 11111 11111 31 1
1 00001 11110 01111 15 61
2 00010 11101 10111 23 30
3 00011 11100 00111 7 301
4 00100 11011 11011 27 14
5 00101 11010 01011 11 186
6 00110 11001 10011 19 86
7 00111 11000 00011 3 301
8 01000 10111 11101 29 6
9 01001 10110 01101 13 102
10 01010 10101 10101 21 48
11 01011 10100 00101 5 186
12 01100 10011 11001 25 18
13 01101 10010 01001 9 102
14 01110 10001 10001 17 42
15 01111 10000 00001 1 61
16 10000 01111 11110 30 2
17 10001 01110 01110 14 42
18 10010 01101 10110 22 20
19 10011 01100 00110 6 86
20 10100 01011 11010 26 8
21 10101 01010 01010 10 48
22 10110 01001 10010 18 20
23 10111 01000 00010 2 30
24 11000 00111 11100 28 2
25 11001 00110 01100 12 18
26 11010 00101 10100 20 8
27 11011 00100 00100 4 14
28 11100 00011 11000 24 2
29 11101 00010 01000 8 6
30 11110 00001 10000 16 2
31 11111 00000 00000 0 1

Table 5: Value Pairing Pattern 
 
Each column shows numbers in pairs, where the row of the paired number can be found 
by starting with the row number, converting to binary representation, doing a one's 
compliment, and reversing the order of bits to determine the row number for the paired 
entry. The pairs for column 8 are shown above.  The pairings are always symmetrical  
 
In cases were the “reversed 1’s complement” equals the original row number, the value 
for that row is “paired” with itself. For example, in column 7, row 0011 maps to itself, 
and thereby has no other paired column.  See next point.  
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Point 4: Self-paired values 
 
For odd numbered columns, the length of the row in binary representation is even. That 
means that some of the row numbers can “pair” to themselves.  For example, for N=7, the 
row pairing vector is {15, 7, 4, 3, 2, 5, 9, 1, 14, 6, 10, 2, 12, 4, 8, 0}, where the rows 
indicated in red map to themselves and have no “pair.”   
 
The first unpaired value in the odd columns is always the highest value for that column.  
And as a sequence themselves are A048144 (re: Complete Bipartite Graphs), with the 
row number following an obvious 2n pattern: 
 

 3 4 5 6 7 8 9 
0 1 1 `1 1 1 1 1 
1  1 5 13 29 61 125 
2   2 6 14 30 62 
3   1 13 73 301 1081 
4    2 6 14 30 
5    6 42 186 690 
6    2 18 86 330 
7    1 29 301 2069 
8     2 6 14 
9     18 102 414 
10     8 48 200 
11     14 186 1394 
12     2 18 86 
13     6 102 834 
14     2 42 374 
15     1 61 1081 
16      2 6 
17      42 222 
18      20 108 
19      86 834 
20      8 48 
21      48 504 
22      20 228 
23      30 690 
24      2 18 
25      18 258 
26      8 120 
27      14 414 
28      2 42 
29      6 222 
30      2 90 
31      1 125 

Table 6: Self-Paired Values 
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Point 5: Recursive Column Calculation 
 
Now note that the bottom half of any column equals the horizontal sum of the two 
previous columns… 
 

 2 3 4 5 6 7
0  1 1 `1 1 1
1   1 5 13 29
2    2 6 14
3    1 13 73
4     2 6
5     6 42
6     2 18
7     1 29
8      2
9      18
10      8
11      14
12      2
13      6
14      2
15      1

 
{1,1,0,0} + {1,5,2,1} = {2,6,2,1}. This is true for all columns.  Plus, the sum of the 
bottom section is A00255 (related to permutation substrings).  
 
More interesting, though, is that this is a simple case of a more general pattern based on 
the binomial distribution. This is the most important relationship, indicating how the table 
can be calculated in its entirety from previous columns, recursively.    
  
First, a quick modification to the Pascal’s Triangle, in which 1 is subtracted from the two 
rightmost values in each row: 
 

1 1      
1 3 2    
1 4 6 3   
1 5 10 10 4  
1 6 15 20 15 5
1 7 21 35 35 21 6

Table 7: Modified Pascal 
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The value for each entry in the frequency table is the dot product of one of the above 
rows and a section of the frequency table.  The selection of the two vectors follows an 
elegant pattern, albeit a little tedious to explain.  
 

  
Row 

 
High Bit 

w/o high 
bit 2 3 4 5 6 7

0 0000  1 1 `1 1 1
1 0001 0 0   1 5 13 29
2 0010 1 0    2 6 14
3 0011 1 1    1 13 73
4 0100 2 0     2 6
5 0101 2 1     6 42
6 0110 2 2     2 18
7 0111 2 3     1 29
8 1000 3 0      2
9 1001 3 1      18
10 1010 3 2      8
11 1011 3 3      14
12 1100 3 4      2
13 1101 3 5      6
14 1110 3 6      2
15 1111 3 7      1
  A000523 A053645      

 
In any column, the top row = 1; the next  row is based on the first; the next 2 rows on the 
first 2; the next 4 on the first 4, the next 8 on the first 8, and so on.  (This view treats a 
block of values at once.  If you were to look each row individually, the input row is 
shown by A053645.) The width of the input section is (N-2) – HighBit.  The rectangles 
show the relationship between each section of rows in column vs. their respective input 
regions.  
 
Each section is then multiplied by the modified Pascal vector (Table 7: Modified Pascal) 
of the corresponding length.  For example, rows 4-7 of column 7 can be calculated as 
follows: 
 
1 1 1  1  6 
1 5 13 * 3     = 42 
0 2 6  2  18 
0 1 13    19 
 
…and so on. 
 
I find it remarkable that this set of relationships coexists with the very different types of 
relationships identified previously. Eg, look at the two 13’s in column 6:  they are paired 
by row number, but one is [0,1,1,1] * [1,4,6,3], and the other is [0,1,5] * [1,3,2].  Etc. 
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Point 6:  Stirling Transforms 
 
Left justify the frequency table (remove leading zeros from any row), a portion of which 
is shown here: 
 

0 1 1 1 1 1 1 
1 1 5 13 29 61 125 
2 2 6 14 30 62 126 
3 1 13 73 301 1081 3613 
4 2 6 14 30 62 126 
5 6 42 186 690 2346 7602 
6 2 18 86 330 1142 3738 
7 1 29 301 2069 11581 57749 
8 2 6 14 30 62 126 
9 18 102 414 1470 4878 15582 

10 8 48 200 720 2408 7728 
11 14 186 1394 8130 41474 195426 
12 2 18 86 330 1142 3738 
13 6 102 834 5070 26466 126462 
14 2 42 374 2370 12662 61362 
15 1 61 1081 11581 95401 673261 
16 2 6 14 30 62 126 
17 42 222 870 3030 9942 31542 

Table 8: Left-Justified Sequence Frequency 
 
The inverse stirling transform provides an interesting result: 

0 1 0 0 0 0
1 1 4 0 0 0
2 2 4 0 0 0
3 1 12 36 0 0
4 2 4 0 0 0
5 6 36 72 0 0
6 2 16 36 0 0
7 1 28 216 576 0
8 2 4 0 0 0
9 18 84 144 0 0

10 8 40 72 0 0
11 14 172 864 1728 0
12 2 16 36 0 0
13 6 96 540 1152 0
14 2 40 252 576 0
15 1 60 900 5760 14400
16 2 4 0 0 0
17 42 180 288 0 0

Table 9: Inverse Stirling Transform of Left-Justified Frequency 
 
Note the length of each row follows an obvious pattern, terminating with zeros.  
Furthermore, the GCD of each column C is C!^2 (particularly interesting, given the left-
justification adjustment). 
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Dividing each column by the GCD: 
1 0 0 0 0
1 1 0 0 0
2 1 0 0 0
1 3 1 0 0
2 1 0 0 0
6 9 2 0 0
2 4 1 0 0
1 7 6 1 0
2 1 0 0 0

18 21 4 0 0
8 10 2 0 0

14 43 24 3 0
2 4 1 0 0
6 24 15 2 0
2 10 7 1 0
1 15 25 10 1

Etc…  
Table 10: Stirling Numbers of Second Kind, from Sequence Frequencies 
 
Note that the row positions 1,2,4,8… generate the Stirling numbers of the second kind.   
 
This table has a number of interesting properties, such as every 4th row is twice the next + 
previous. Again, there exist a great number of this relationships of this type, but I find it 
especially surprising since the table was generated from frequency table after being 
realigned via left-justification. 
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Point 7: “Pièce de résistance” 
Every row in the above table can be represented by a linear combination of the stirling 
rows above it:  (In the table below, Column 1 shows the multiplier for the first stirling 
row, column 2 for the second, etc.): 
 

1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
1 1 0 0 0
1 3 2 0 0
0 1 1 0 0
0 0 0 1 0
1 1 0 0 0
5 9 4 0 0
2 4 2 0 0
1 4 6 3 0
0 1 1 0 0
0 1 3 2 0
0 0 1 1 0
0 0 0 0 1
1 1 0 0 0

13 21 8 0 0
6 10 4 0 0

13 34 30 9 0
2 4 2 0 0
6 18 18 6 0
2 7 8 3 0
1 5 10 10 4
0 1 1 0 0
0 5 9 4 0
0 2 4 2 0
0 1 4 6 3
0 0 1 1 0
0 0 1 3 2
0 0 0 1 1

Table 11: Equations for each row based on Stirling 
 
 The yellow sections follow an obvious – yet different – power of 2 pattern, and 

spell out the modified Pascal table. Note that below each yellow section are 
recurrences of the modified Pascal table.  For example, while not detailed in this 
write-up, look at the right-most column. 

 Embedded within each single column is the entire original sequence frequency 
table (Table 1: Sequence Frequencies) in vertical form.  It is most obvious in the 
first column, where there is nothing but the original sequence frequencies 
separated by zeros.   

 
So, Columnar Sequence Frequencies ->. Left justify -> Inverse Stirling Xform -> GCD -> 
Linear Combinations -> Single Column Sequence Frequencies AND modified Pascal. 
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Point 8: Row Equations of form  ki * in 
 
The above table can be generated a second way, with other surprising intermediate 
patterns.  Instead of using an inverse stirling transform on the left-justified frequency 
table, determine the coefficients that put each row into the form a*1n + b*2 n + c*3 n … 
 

1 0 0 0 0 0
-3 2 0 0 0 0
-2 2 0 0 0 0
7 -12 6 0 0 0

-2 2 0 0 0 0
6 -18 12 0 0 0
4 -10 6 0 0 0

-15 50 -60 24 0 0
-2 2 0 0 0 0
6 -30 24 0 0 0
4 -16 12 0 0 0

-14 86 -144 72 0 0
4 -10 6 0 0 0

-12 66 -102 48 0 0
-8 38 -54 24 0 0
31 -180 390 -360 120 0
-2 2 0 0 0 0
6 -54 48 0 0 0
4 -28 24 0 0 0

-14 158 -360 216 0 0
4 -16 12 0 0 0

-12 120 -252 144 0 0
-8 68 -132 72 0 0
30 -330 1020 -1200 480 0

4 -10 6 0 0 0
-12 102 -186 96 0 0

-8 56 -96 48 0 0
28 -286 834 -936 360 0
-8 38 -54 24 0 0
24 -222 606 -648 240 0
16 -130 330 -336 120 0

-63 602 -2100 3360 -2520 720
 

1) Each column C (other than the first) now has a GCD = C! 
2) Note the sequence of factorials along the upper right edge 
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Point 9: Stirling of Second Kind 
 
Dividing each column in the above table by its GCD creates: 
 

1 0 0 0 0 0 
-3 1 0 0 0 0 
-2 1 0 0 0 0 
7 -6 1 0 0 0 

-2 1 0 0 0 0 
6 -9 2 0 0 0 
4 -5 1 0 0 0 

-15 25 -10 1 0 0 
-2 1 0 0 0 0 
6 -15 4 0 0 0 
4 -8 2 0 0 0 

-14 43 -24 3 0 0 
4 -5 1 0 0 0 

-12 33 -17 2 0 0 
-8 19 -9 1 0 0 
31 -90 65 -15 1 0 
-2 1 0 0 0 0 
6 -27 8 0 0 0 
4 -14 4 0 0 0 

-14 79 -60 9 0 0 
4 -8 2 0 0 0 

-12 60 -42 6 0 0 
-8 34 -22 3 0 0 
30 -165 170 -50 4 0 

4 -5 1 0 0 0 
-12 51 -31 4 0 0 

-8 28 -16 2 0 0 
28 -143 139 -39 3 0 
-8 19 -9 1 0 0 
24 -111 101 -27 2 0 
16 -65 55 -14 1 0 

-63 301 -350 140 -21 1 
 

 Again the yellow sections show the stirling numbers of the second kind, but with 
the first column missing. 

 The new first column as an interesting pattern. The stirling rows are obvious (1, 
-3, 7, -15, 31, -63, …).  The rows in between stirling rows are -2 * the same 
length section before it.  Eg:  [-2, 6, 4, -14, 4, -12, -8] = -2 * [1, -3, -2, 7, -2, 6, 4].   

 And again, if you represent each row as a linear combination of the yellow rows 
above it, you recreate (Table 11: Equations for each row based on Stirling) from 
Point 7 which regenerates the modified Pascal table, and the original sequence 
frequency table. 
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Results 
 
People Probability 

1 1.0000000000000000
2 0.0000000000000000
3 0.2500000000000000
4 0.1388888888888890
5 0.1319444444444440
6 0.1127777777777780
7 0.1005324074074070
8 0.0904946145124717
9 0.0823823696145125

10 0.0756457860922147
11 0.0699601678634417
12 0.0650929057547925
13 0.0608764331768653
14 0.0571864406383405
15 0.0539286981954046
16 0.0510304102987377
17 0.0484344083463231
18 0.0460951435768213
19 0.0439758588666862
20 0.0420465521576293
21 0.0402824835695692
22 0.0386630634659079

Table 12: Probability Table 
 

Probability vs. Number of People

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of People

P
ro

b
ab

il
it

y

 
Figure 1: Probability Graph 
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A136301 
1,1,1,1,5,2,1,1,13,6,13,2,6,2,1,1, 29, 14, 73, 6, 42, 18, 29, 2, 18, 8, 14, 2, 6, 2, 1, 1, 61, 30, 
301, 14, 186, 86, 301, 6, 102, 48, 186, 18, 102, 42, 61, 2, 42, 20, 86, 8, 48, 20, 30, 2, 18, 
8, 14, 2, 6, 2, 1, 1, 125, 62, 1081, 30, 690, 330, 2069, 14, 414, 200, 1394, 86, 834, 374, 
1081, 6, 222, 108, 834, 48, 504, 228, 690, 18, 258, 120, 414, 42, 222, 90, 125, 2, 90, 44, 
374, 20, 228, 104, 330, 8, 120, 56, 200, 20, 108, 44, 62, 2, 42, 20, 86, 8, 48, 20, 30, 2, 18, 
8, 14, 2, 6, 2, 1, 1, 253, 126, 3613, 62, 2346, 1142, 11581, 30, 1470, 720, 8130, 330, 
5070, 2370, 11581, 14, 870, 428, 5354, 200, 3360, 1580, 8130, 86, 1926, 920, 5354, 374, 
3138, 1382, 3613, 6, 462, 228, 3138, 108, 1980, 936, 5070, 48, 1152, 552, 3360, 228, 
1980, 876, 2346, 18, 570, 276, 1926, 120, 1152, 516, 1470, 42, 570, 264, 870, 90, 462, 
186, 253, 2, 186, 92, 1382, 44, 876, 416, 2370, 20, 516, 248, 1580, 104, 936, 416, 1142, 
8, 264, 128, 920, 56, 552, 248, 720, 20, 276, 128, 428, 44, 228, 92, 126, 2, 90, 44, 374, 
20, 228, 104, 330, 8, 120, 56, 200, 20, 108, 44, 62, 2, 42, 20, 86, 8, 48, 20, 30, 2, 18, 8, 
14, 2, 6, 2, 1 
 
Description: The frequency of occurrence for each pattern of all outcomes for a Secret 
Santa drawing, in which each person draws a name in sequence but is not allowed to pick 
his own name, and for which the last person does draw his own name.  For much more 
detail, see A136300.  The sequence is best represented as a series of columns 1..n, where 
each column n has 2^(n-1) rows.  
 
Formula: H(r,c) = sum of H(T(r),L(r)+j) * M(c-T(r)-1,j) for j = 0..c-L(r)-1, where M(y,z) 
= binomial distribution (y,z) when y - 1 > z, and (y,z)-1 when (y-1)<=z, and T(r) = 
A053645, and L(r) = A000523. 
 
Formula in Mathematica: 
maxP = number of rows to calculate 
rows = Range[ 1, 2^(nP = maxP-3)  ]; 
pasc = Table[ Binomial[ p+1, i] - If[ i >= p, 1,0], {p, nP}, {i, 0, p} ];  
sFreq = Table[0,{maxP-1}, {2^nP} ]; sFreq[[2;;maxP-1, 1]] = 1; 
For[ p=1, p<=nP, p++, For[ s=1, s<=p, s++, \ 

rS=Range[2^(s-1)+1, 2^s]; \ 
sFreq[[p+2,rS]]=pasc[[p+1-s,1;;p+2-s]].sFreq[[ s;;p+1,1;;2^(s-1)]] ] ]; 

TableForm[Transpose[sFreq]] 
 
Example: For 5 people, there are 9 target outcomes for which the last person gets his own 
name. But these 9 outcomes share only 4 possible probabilities, namely, 12/576, 8/576, 
9/576, and 6/576.  For the 9 outcomes, they distribute over these 4 probabilities with the 
distribution 1, 5, 2, 1 for a total likelihood of 76/576.  As to the calculation of the table 
itself...look at H(3,5) which has the unique value of 73.  The final step in the formula 
described above is the dot product of two vectors: {0, 1, 5, 13} * {1, 4, 6, 3} = 73.  
Vector M is {1,4,6,3} is similar to the binomial distribution for 4 items, but the case (4,3) 
is 3 instead of 4 (as described by the formula). 
 
 


