login
A136293
Linear bound on the genera of Heegaard splittings of closed, orientable 3-manifolds that admit a generalized triangulation with n generalized tetrahedra.
0
26, 102, 178, 254, 330, 406, 482, 558, 634, 710, 786, 862, 938, 1014, 1090, 1166, 1242, 1318, 1394, 1470, 1546, 1622, 1698, 1774, 1850, 1926, 2002, 2078, 2154, 2230, 2306, 2382, 2458, 2534, 2610, 2686, 2762, 2838, 2914, 2990, 3066, 3142, 3218, 3294, 3370
OFFSET
0,1
COMMENTS
Let N be a closed, orientable 3-manifold that admits a triangulation with t tetrahedra. Let F be a Heegaard surface for N. S. Schleimer showed that if g(F) >= 2^{2^{16}t^2}, then the Hempel distance of F (denoted by d(F)) is at most two. In this paper we prove the following generalization:
Let M be an orientable 3-manifold that admits a generalized triangulation with t generalized tetrahedra. Let S be a Heegaard surface for M. If g(S) >= 76t+26, then d(S) <= 2.
FORMULA
a(n) = 76*n + 26.
a(n) = 2*a(n-1)-a(n-2). G.f.: 2*(25*x+13)/(x-1)^2. [Colin Barker, Nov 09 2012]
MATHEMATICA
LinearRecurrence[{2, -1}, {26, 102}, 50] (* Harvey P. Dale, Oct 14 2013 *)
CROSSREFS
Sequence in context: A159541 A144129 A026915 * A065013 A031434 A173089
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 20 2008
STATUS
approved