login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136284 Number of graphs on n labeled nodes with maximal degree exactly 2. 1
0, 0, 4, 31, 227, 1782, 15564, 151455, 1635703, 19457998, 252962528, 3568119351, 54262590843, 884831668974, 15397747311556, 284767367151241, 5576696534340377, 115269731259650802, 2507575460681918232, 57262481202198407625, 1369461739333488200365 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..200

FORMULA

Equals A136281 - A000085.

Recurrence: 2*(n-3)*(9*n-64)*a(n) = 2*(18*n^3 - 182*n^2 + 423*n - 149)*a(n-1) - 2*(n-1)*(9*n^3 - 91*n^2 + 243*n - 173)*a(n-2) + 6*(n-2)*(n-1)*(n+1)*a(n-3) + (n-3)*(n-2)*(n-1)*(9*n^2 - 91*n + 224)*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*(9*n-67)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n-55)*a(n-6). - Vaclav Kotesovec, Feb 09 2014

a(n) ~ exp(sqrt(2*n)-n-1/2) * n^n / sqrt(2) * (1 + 19/(24*sqrt(2*n))). - Vaclav Kotesovec, Feb 09 2014

E.g.f.: exp(1/(1-x)/2 - 1/2 + log(1/(1-x))/2-x^2/4) - exp(x+x^2/2!). - Joerg Arndt, Jul 24 2016

MATHEMATICA

nn = 20; Drop[Range[0, nn]! CoefficientList[Series[Exp[1/(1 - z)/2 - 1/2 + Log[1/(1 - z)]/2 - z^2/4] - Exp[z + z^2/2!], {z, 0, nn}], z], 1] (* Geoffrey Critzer, Jul 23 2016 *)

PROG

(PARI) x='x+O('x^22); concat( [0, 0], Vec( serlaplace( exp(1/(1-x)/2 - 1/2 + log(1/(1-x))/2-x^2/4) - exp(x+x^2/2!) ) ) ) \\ Joerg Arndt, Jul 24 2016

CROSSREFS

Cf. A000085 (degree at most 1), A136281, A136282, A136283, A136285, A136286.

Sequence in context: A005216 A124033 A014537 * A183911 A039765 A001091

Adjacent sequences:  A136281 A136282 A136283 * A136285 A136286 A136287

KEYWORD

nonn

AUTHOR

Don Knuth, Mar 31 2008

EXTENSIONS

More terms from Alois P. Heinz, Sep 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 11:04 EST 2018. Contains 317182 sequences. (Running on oeis4.)