This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136281 Number of graphs on n labeled nodes with degree at most 2. 7

%I

%S 1,2,8,41,253,1858,15796,152219,1638323,19467494,252998224,3568259503,

%T 54263159347,884834059454,15397757661092,284767413357977,

%U 5576696746139689,115269732256964626,2507575465491619672,57262481225957071721,1369461739453440893261

%N Number of graphs on n labeled nodes with degree at most 2.

%C These are thunderstorm graphs. Their connected components are a single cycle (clouds), a path (lightning bolts) or an isolated vertex (raindrops). - _Geoffrey Critzer_, May 11 2011

%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

%H Vincenzo Librandi, <a href="/A136281/b136281.txt">Table of n, a(n) for n = 1..200</a>

%H Samuele Giraudo, <a href="http://igm.univ-mlv.fr/~giraudo/Articles/CliqueFPSAC.pdf">Combalgebraic structures on decorated cliques</a>, Formal Power Series and Algebraic Combinatorics, SÃ©minaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8.

%F Binomial transform of A000986. E.g.f.: (1-x)^(-1/2)*exp(-x^2/4 + x/((2*(1-x)))). - _Vladeta Jovovic_, May 20 2008

%F a(n) = (2*n-1)*a(n-1) - (n-1)^2*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)/2*a(n-4). - _Vaclav Kotesovec_, Aug 10 2013

%F a(n) ~ n^n*exp(sqrt(2*n)-1/2-n)/sqrt(2) * (1+19/(24*sqrt(2*n))). - _Vaclav Kotesovec_, Aug 10 2013

%t f = (Log[1/(1-x)]+1/(1-x) -x^2/2 - 1)/2;

%t Range[0,25]! CoefficientList[Series[Exp[f],{x,0,25}],x] (* _Geoffrey Critzer_, May 11 2011 *)

%Y Cf. A000085 (degree at most 1), A136282-A136286.

%K nonn

%O 1,2

%A _Don Knuth_, Mar 31 2008

%E More terms from _Vladeta Jovovic_, May 20 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 10:32 EST 2019. Contains 319363 sequences. (Running on oeis4.)