The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136270 a(n) = 20*a(n-1) - 3*a(n-2). 1
 1, 17, 337, 6689, 132769, 2635313, 52307953, 1038253121, 20608138561, 409048011857, 8119135821457, 161155572393569, 3198754040407009, 63491614090959473, 1260236019697968433, 25014245551686490241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n)/a(n-1) tends to (sqrt(97) + 10), an eigenvalue of the matrix and root of the characteristic polynomial x^2 - 20x + 3. LINKS G. C. Greubel, Table of n, a(n) for n = 1..765 Index entries for linear recurrences with constant coefficients, signature (20,-3). FORMULA a(n) = 20*a(n-1) - 3*a(n-2), n>2; a(1) = 1, a(2) = 17. [a(3), a(4)] = the 2 X 2 matrix [0,1; -3,20]^n * [1,1]. A137246(n) = 20*a(n) - 3*a(n-1), n>4. O.g.f.: (1-3*x)/(1-20*x+3*x^2). - R. J. Mathar and Alexander R. Povolotsky, Mar 31 2008 a(n) = (1/2)*(10 - sqrt(97))^n - (9/194)*sqrt(97)*(10 + sqrt(97))^n + (1/2)*(10 + sqrt(97))^n + (9/194)*(10 - sqrt(97))^n*sqrt(97) - Alexander R. Povolotsky, Mar 31 2008 EXAMPLE a(4) = 20*a(3) - 3*a(2) = 20*337 - 3*17. [a(3), a(4)] = [0,1; -3,20] ^3 * [1,1] = [337, 6689]. MATHEMATICA LinearRecurrence[{20, -3}, {1, 17}, 50] (* G. C. Greubel, Feb 23 2017 *) PROG (PARI) x='x+O('x^50); Vec((1-3*x)/(1-20*x+3*x^2)) \\ G. C. Greubel, Feb 23 2017 CROSSREFS Cf. A137246. Sequence in context: A318597 A142933 A180676 * A009046 A012112 A294435 Adjacent sequences: A136267 A136268 A136269 * A136271 A136272 A136273 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Mar 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 20:46 EST 2022. Contains 358698 sequences. (Running on oeis4.)