

A136268


Cyclic proots of prime lengths p(n).


0



2, 6, 70, 924, 184756, 2704156, 601080390, 9075135300, 2104098963720, 7648690600760440, 118264581564861424, 442512540276836779204, 107507208733336176461620, 1678910486211891090247320, 410795449442059149332177040
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In this paper it is proved, that for every prime number p, the set of cyclic proots in C^p is finite. Moreover the number of cyclic proots counted with multiplicity is equal to (2p2)!/(p1)!^2. In particular, the number of complex circulant Hadamard matrices of size p, with diagonal entries equal to 1, is less than or equal to (2p2)!/(p1)!^2.


LINKS

Table of n, a(n) for n=1..15.
Uffe Haagerup, Cyclic proots of prime lengths p and related complex Hadamard matrices, arXiv:0803.2629 Mar 19, 2008.


FORMULA

a(n) = (2*p_n  2)!/(p_n  1)!^2 where p_n = prime(n) = A000040(n). a(n) = A000142(2*A000040(n)2)/((A000142(A000040(n)1)^2).


CROSSREFS

Cf. A000040, A000142.
Sequence in context: A219037 A156458 A244494 * A030242 A037293 A129785
Adjacent sequences: A136265 A136266 A136267 * A136269 A136270 A136271


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Mar 18 2008


STATUS

approved



