The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136268 Cyclic p-roots of prime lengths p(n). 0
 2, 6, 70, 924, 184756, 2704156, 601080390, 9075135300, 2104098963720, 7648690600760440, 118264581564861424, 442512540276836779204, 107507208733336176461620, 1678910486211891090247320, 410795449442059149332177040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In this paper it is proved, that for every prime number p, the set of cyclic p-roots in C^p is finite. Moreover the number of cyclic p-roots counted with multiplicity is equal to (2p-2)!/(p-1)!^2. In particular, the number of complex circulant Hadamard matrices of size p, with diagonal entries equal to 1, is less than or equal to (2p-2)!/(p-1)!^2. LINKS Uffe Haagerup, Cyclic p-roots of prime lengths p and related complex Hadamard matrices, arXiv:0803.2629 Mar 19, 2008. FORMULA a(n) = (2*p_n - 2)!/(p_n - 1)!^2 where p_n = prime(n) = A000040(n). a(n) = A000142(2*A000040(n)-2)/((A000142(A000040(n)-1)^2). CROSSREFS Cf. A000040, A000142. Sequence in context: A219037 A156458 A244494 * A030242 A037293 A129785 Adjacent sequences: A136265 A136266 A136267 * A136269 A136270 A136271 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Mar 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 12:39 EST 2022. Contains 358693 sequences. (Running on oeis4.)