This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136254 Generator for the finite sequence A053016. 1
 4, 6, 8, 12, 20, 34, 56, 88, 132, 190, 264, 356, 468, 602, 760, 944, 1156, 1398, 1672, 1980, 2324, 2706, 3128, 3592, 4100, 4654, 5256, 5908, 6612, 7370, 8184, 9056, 9988, 10982, 12040, 13164, 14356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = n^3/3 - n^2 + 8n/3 + 4. G.f.: (8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1). - Alexander R. Povolotsky, Mar 31 2008 From G. C. Greubel, Feb 23 2017: (Start) E.g.f.: (1/3)*(12 + 6*x + x^3)*exp(x). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End) MATHEMATICA CoefficientList[Series[(8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Feb 23 2017 *) LinearRecurrence[{4, -6, 4, -1}, {4, 6, 8, 12}, 40] (* Harvey P. Dale, Jul 23 2018 *) PROG (PARI) x='x+O('x^50); Vec((8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)) \\ G. C. Greubel, Feb 23 2017 CROSSREFS Cf. A053016. Sequence in context: A078785 A308875 A323059 * A146528 A216051 A176777 Adjacent sequences:  A136251 A136252 A136253 * A136255 A136256 A136257 KEYWORD nonn AUTHOR Rolf Pleisch, Mar 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 06:18 EST 2019. Contains 330016 sequences. (Running on oeis4.)