This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136209 Differentiation of A137286: Triangle of coefficients of differentiation recursive orthogonal Hermite polynomials given in Hochstadt's book : P(x, n) = x*P(x, n - 1) - n*P(x, n - 2). 0
 1, 0, 2, -5, 0, 3, 0, -18, 0, 4, 33, 0, -42, 0, 5, 0, 174, 0, -80, 0, 6, -279, 0, 555, 0, -135, 0, 7, 0, -1950, 0, 1380, 0, -210, 0, 8, 2895, 0, -7920, 0, 2940, 0, -308, 0, 9, 0, 25290, 0, -24360, 0, 5628, 0, -432, 0, 10, -35685, 0, 125055, 0, -62790, 0, 9954, 0, -585, 0, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums are: {1, 2, -2, -14, -4, 100, 148, -772, -2384, 6136, 35960} REFERENCES page 8 and pages 42 - 43 : Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986 LINKS FORMULA P(x, n) = x*P(x, n - 1) - n*P(x, n - 2); L(x,n)=dP(x,n+1]/dx EXAMPLE {1}, {0, 2}, {-5, 0, 3}, {0, -18, 0, 4}, {33, 0, -42, 0,5}, {0, 174, 0, -80, 0, 6}, {-279, 0, 555, 0, -135, 0, 7}, {0, -1950, 0, 1380, 0, -210, 0, 8}, {2895, 0, -7920, 0, 2940, 0, -308, 0, 9}, {0, 25290,0, -24360, 0, 5628, 0, -432, 0, 10}, {-35685, 0, 125055, 0, -62790, 0,9954, 0, -585, 0, 11} MATHEMATICA H[x, 0] = 1; H[x, 1] = x; H[x_, n_] := H[x, n] = x*H[x, n - 1] - n*H[x, n - 2]; L[x_, n_] := D[H[x, n + 1], x]; a0 = Table[ExpandAll[L[x, n]], {n, 0, 10}]; a = Table[CoefficientList[L[x, n], x], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A137286. Sequence in context: A127863 A006891 A054675 * A212248 A208476 A112695 Adjacent sequences:  A136206 A136207 A136208 * A136210 A136211 A136212 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .