login
A136163
Integration of A053120: triangle of coefficients of integration of Chebyshev's T(n,x) polynomials (powers of x in increasing order).
0
1, -1, -1, -1, -3, 0, 2, 4, 0, -12, 0, 8, -1, 15, 0, -40, 0, 24, -4, 0, 60, 0, -120, 0, 64, -1, -35, 0, 210, 0, -336, 0, 160, 8, 0, -168, 0, 672, 0, -896, 0, 384, -1, 63, 0, -672, 0, 2016, 0, -2304, 0, 896, -8, 0, 360, 0, -2400, 0, 5760, 0, -5760, 0, 2048, -1, -99, 0, 1650, 0, -7920, 0, 15840, 0, -14080, 0, 4608
OFFSET
1,5
COMMENTS
The row sums are:
{-2, 0, -2, 0, -2, 0, -2, 0, -2, 0, -2}
These polynomials are orthogonal:
Table[Table[Integrate[Sqrt[1/(1 - x^2)]*a0[[ n]]*a0[[m]], {x, -1, 1}], {n, 1, 11}], {m, 1, 11}]
Solving for the recurrence:
Table[{c, d} /. Solve[{a0[[n]] -c*x*a0[[n - 1]] + d*a0[[n - 2]] == 0, a0[[n + 1]] - c*x*a0[[n]] + d*a0[[n - 1]] == 0}, {c, d}], {n, 3, 8}];
gives:
Q(x,n)=2*x*Q(x,n-1)-Q(x,n-2)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 8 and pages 42 - 43;
FORMULA
T(x,n)=2*x*T(x,n-1)-T(x,n-2); Q(x,n)=Integrate[T(y,n-1),{y,-1,x}]
EXAMPLE
{1},
{-1, -1},
{},
{-1, -3, 0, 2},
{4,0, -12, 0, 8},
{-1, 15, 0, -40, 0, 24},
{-4, 0, 60, 0, -120, 0, 64},
{-1, -35, 0, 210, 0, -336, 0, 160},
{8, 0, -168, 0,672, 0, -896, 0, 384},
{-1, 63, 0, -672, 0, 2016, 0, -2304, 0, 896}.
{-8, 0, 360, 0, -2400, 0, 5760, 0, -5760, 0, 2048},
{-1, -99, 0, 1650, 0, -7920, 0, 15840, 0, -14080, 0, 4608}
MATHEMATICA
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; a0 = Table[ExpandAll[P[x, n]] /. x -> y, {n, 0, 10}]; b0 = Table[n*(n - 2)*Integrate[a0[[n]], {y, -1, x}], {n, 1, 11}] a = Join[{{1}}, Table[CoefficientList[b0[[n]], x], {n, 1, 11}]] Table[Apply[Plus, CoefficientList[b0[[n]], x]], {n, 1, 11}] Flatten[a]
CROSSREFS
Cf. A053120.
Sequence in context: A201924 A112974 A113069 * A178313 A190013 A171088
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Mar 16 2008, corrected Apr 06 2008
STATUS
approved