This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136161 a(n) = 2*a(n-3)-a(n-6), starting a(0..5) = 0, 5, 2, 1, 3, 1. 0
 0, 5, 2, 1, 3, 1, 2, 1, 0, 3, -1, -1, 4, -3, -2, 5, -5, -3, 6, -7, -4, 7, -9, -5, 8, -11, -6, 9, -13, -7, 10, -15, -8, 11, -17, -9, 12, -19, -10, 13, -21, -11, 14, -23, -12, 15, -25, -13, 16, -27, -14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The intent is to show the triples (0,5,2), (1,3,1), (2,1,0), etc of the coefficients (k,5-2k,2-k), k=0,1,2,... that define recurrences a(n) = k*a(n-1) + (5-2k)*a(n-2) + (2-k)*a(n-3). The first triple describes linear recurrences with "signature" 0, 5, 2 like A112685, A135138 etc. The second triple describes linear recurrences with "signature" 1, 3, 1 like A097076. (See the OEIS index "recurrence, linear.." for more examples.) LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1) FORMULA G.f. -x*(-5-2*x-x^2+7*x^3+3*x^4) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Jul 06 2011 a(3n) = n. a(3n+1) = 5-2n. a(3n+3)=2-n. MATHEMATICA LinearRecurrence[{0, 0, 2, 0, 0, -1}, {0, 5, 2, 1, 3, 1}, 60] (* Harvey P. Dale, Aug 16 2012 *) PROG (PARI) Vec(-x*(-5-2*x-x^2+7*x^3+3*x^4) / ( (x-1)^2*(1+x+x^2)^2+O(x^99))) \\ Charles R Greathouse IV, Jul 06 2011 CROSSREFS Cf. A135997, A137241. Sequence in context: A038631 A158625 A133615 * A197383 A266455 A091505 Adjacent sequences:  A136158 A136159 A136160 * A136162 A136163 A136164 KEYWORD sign,easy AUTHOR Paul Curtz, Mar 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:06 EDT 2019. Contains 328017 sequences. (Running on oeis4.)