login
A136155
Composites one larger than a prime and with exactly two or three distinct prime factors.
5
6, 12, 14, 18, 20, 24, 30, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284, 294
OFFSET
1,1
LINKS
FORMULA
Union of A136151 and A136152. Subset of A008864. - R. J. Mathar, Apr 24 2008
A136151 UNION A136152. - R. J. Mathar, May 03 2008
EXAMPLE
a(1)=6, which is one larger than the prime 5 and has 2 distinct prime factors (namely 2 and 3).
60 is in the sequence because 59 is prime and 60 = 2^2*3*5 has three distinct prime factors.
MAPLE
A001221 := proc(n) nops(numtheory[factorset](n)) ; end: isA136155 := proc(n) if isprime(n-1) then RETURN( A001221(n)=2 or A001221(n)= 3) ; else RETURN(false) ; fi ; end: for n from 1 to 300 do if isA136155(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, May 03 2008
MATHEMATICA
okQ[n_] := PrimeQ[n-1] && (PrimeNu[n]==2 || PrimeNu[n]==3);
Select[Range[6, 300, 2], okQ] (* Jean-François Alcover, Feb 04 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Dec 16 2007
EXTENSIONS
Edited by R. J. Mathar and Jens Kruse Andersen, Apr 24 2008
STATUS
approved