This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136141 Decimal expansion of Sum_{p prime} 1/(p(p-1)). 10
 7, 7, 3, 1, 5, 6, 6, 6, 9, 0, 4, 9, 7, 9, 5, 1, 2, 7, 8, 6, 4, 3, 6, 7, 4, 5, 9, 8, 5, 5, 9, 4, 2, 3, 9, 5, 6, 1, 8, 7, 4, 1, 3, 3, 6, 0, 8, 3, 1, 8, 6, 0, 4, 8, 3, 1, 1, 0, 0, 6, 0, 6, 7, 3, 5, 6, 7, 0, 9, 0, 2, 8, 4, 8, 9, 2, 3, 3, 3, 9, 7, 8, 3, 3, 7, 9, 8, 7, 5, 8, 8, 2, 3, 3, 2, 0, 8, 1, 8, 3, 2, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Excess of prime factors with multiplicity over distinct prime factors for random (large) integers. - Charles R Greathouse IV, Sep 06 2011 Sum of reciprocals of (proper) prime powers. The sum of reciprocals of all proper powers is A072102. - Charles R Greathouse IV, Apr 24 2012 Decimal expansion of the infinite sum of the reciprocals of the prime powers which are not prime (A246547). - Robert G. Wilson v, May 13 2019 See the second 'Applications' example under the Mathematica help file for the function PrimePowerQ. - Robert G. Wilson v, May 13 2019 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants, p. 94. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..10000 (first 1002 terms from Jason Kimberley). H. Cohen, High-precision calculation of Hardy-Littlewood constants, preprint 1991. R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Tables 8 and 10. FORMULA Equals Sum_{n>=1} 1/(A001248(n)-A000040(n)). Equals Sum_{s>=2} P(s), where P is the prime zeta function. - Charles R Greathouse IV, Sep 06 2011 Equals A083342-A077761, that is Sum_{n>=2} (EulerPhi(n)-MoebiusMu(n))/n * log(zeta(n)). - Jean-François Alcover, Sep 02 2015 EXAMPLE Equals 1/2+1/(3*2)+1/(5*4)+1/(7*6)+... = 0.7731566690497951278643674598559423956187413360831860483110060673567... MATHEMATICA digits = 103; sp = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *) PROG (PARI) W(x)=solve(y=log(x)/2, max(1, log(x)), y*exp(y)-x) eps()=2. >> (32*ceil(default(realprecision)/9.63)) primezeta(s)=my(t=s*log(2), iter=W(t/eps())\t); sum(k=1, iter, moebius(k)/k*log(abs(zeta(k*s)))) a(lim, e)={ \\ choose parameters to maximize speed and precision     my(x, y=exp(W(lim)-.5));     x=lim^e*(e*log(y))^e*(y*log(y))^-e*incgam(-e, e*log(y));     forprime(p=2, lim, x+=1/((p*1.)^e*(p-1)));     x+sum(n=2, e, primezeta(n)) }; \\ Charles R Greathouse IV, Sep 07 2011 (MAGMA) R := RealField(105); c := &+[R|(EulerPhi(n)-MoebiusMu(n))/n*Log(ZetaFunction(R, n)):n in[2..360]]; Reverse(IntegerToSequence(Floor(c*10^103))); // Jason Kimberley, Jan 12 2017 CROSSREFS Cf. A152447 (over the semiprimes), A077761, A083342, A179119. Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9). Sequence in context: A266271 A021568 A199613 * A264806 A197843 A211074 Adjacent sequences:  A136138 A136139 A136140 * A136142 A136143 A136144 KEYWORD cons,easy,nonn AUTHOR R. J. Mathar, Mar 09 2008 EXTENSIONS More terms from D. S. McNeil, Sep 06 2011 More digits from Jean-François Alcover, Sep 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 12:45 EDT 2019. Contains 328006 sequences. (Running on oeis4.)