login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136125 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} in which the size of the last cycle is k (the cycles are ordered by increasing smallest elements; 1 <= k <=n). 2
1, 1, 1, 3, 1, 2, 12, 4, 2, 6, 60, 20, 10, 6, 24, 360, 120, 60, 36, 24, 120, 2520, 840, 420, 252, 168, 120, 720, 20160, 6720, 3360, 2016, 1344, 960, 720, 5040, 181440, 60480, 30240, 18144, 12096, 8640, 6480, 5040, 40320 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums are the factorials (A000142). T(n,1)=n!/2 for n>=2; Sum(k*T(n,k),k=1..n)=s(n,2)=A000254(n) (Stirling numbers of the first kind).

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

T(n,k) = n!/[k(k+1)] if k<n; T(n,n)=(n-1)!.

Rec. rel.: T(n,k) = (n-1-k)*T(n-1,k) + (k-1)T(n-1,k-1) for 1 < k < n.

EXAMPLE

T(4,2) = 4 because we have (1)(2)(34), (13)(24), (12)(34) and (14)(23).

Triangle starts:

   1;

   1,  1;

   3,  1,  2;

  12,  4,  2, 6;

  60, 20, 10, 6, 24;

MAPLE

T:=proc(n, k) if k < n then factorial(n)/(k*(k+1)) elif k = n then factorial(n-1) else 0 end if end proc: for n to 9 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form

# second Maple program:

b:= proc(n, l) option remember; `if`(n=0, x^l, add(

      binomial(n-1, j-1)*b(n-j, j)*(j-1)!, j=1..n))

    end:

T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, 0)):

seq(T(n), n=1..12);  # Alois P. Heinz, Dec 08 2018

CROSSREFS

Cf. A000142, A000254.

T(2n,n) gives A322450.

Sequence in context: A300973 A300930 A109528 * A092580 A004468 A254630

Adjacent sequences:  A136122 A136123 A136124 * A136126 A136127 A136128

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jan 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 19:55 EDT 2019. Contains 327117 sequences. (Running on oeis4.)