OFFSET
8,1
COMMENTS
Inverse binomial transform gives 6, 21, 25, 11, 1, 0, 0, ... (0 continued). - R. J. Mathar, May 17 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = Sum_{j=8..n} Sum_{k=8..j} ((k*(k+1)/2)-30). [corrected by Jason Yuen, Sep 26 2024]
a(n) = Sum_{j=8..n} (1/6)*(j-7)*(j^2+10*j-108).
a(n) = (n-6)(n-7)(n^2+19n-144)/24. O.g.f: x^8(6-3x-2x^2)/(1-x)^5. - R. J. Mathar, May 17 2008
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) with a(8)=6, a(9)=27, a(10)=73, a(11)=155, a(12)=285. - Harvey P. Dale, Oct 20 2013
MATHEMATICA
Accumulate[LinearRecurrence[{4, -6, 4, -1}, {6, 21, 46, 82}, 50]] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {6, 27, 73, 155, 285}, 50] (* Harvey P. Dale, Oct 20 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 10 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, May 17 2008
STATUS
approved