This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136013 a(n) = floor(n/2) + 2 a(floor(n/2)), a(0) = 0. 2
 0, 0, 1, 1, 4, 4, 5, 5, 12, 12, 13, 13, 16, 16, 17, 17, 32, 32, 33, 33, 36, 36, 37, 37, 44, 44, 45, 45, 48, 48, 49, 49, 80, 80, 81, 81, 84, 84, 85, 85, 92, 92, 93, 93, 96, 96, 97, 97, 112, 112, 113, 113, 116, 116, 117, 117, 124, 124, 125, 125, 128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A recursive sequence that seems to be related to the ruler function. It seems that a(2n) = a(2n+1) = A080277(n). - Emeric Deutsch, Mar 31 2008 It appears that if the binary expansion of n is n = Sum b_i*2^i (b_i=0 or 1), then a(n) = Sum i*b_i*2^(i-1). - Marc LeBrun, Sep 07 2015 LINKS MAPLE a:=proc(n) if n=0 then 0 else floor((1/2)*n)+2*a(floor((1/2)*n)) end if end proc: seq(a(n), n=0..60); # Emeric Deutsch, Mar 31 2008 MATHEMATICA a = {0}; Do[AppendTo[a, Floor[n/2] + 2*a[[Floor[n/2] + 1]]], {n, 1, 100}]; a (* Stefan Steinerberger, Mar 24 2008 *) Table[Sum[2^(k-1)*Floor[n*2^-k], {k, 1, Log[2, n]}], {n, 0, 100}] (* Federico Provvedi, Aug 17 2013 *) CROSSREFS Cf. A080277. Sequence in context: A257291 A152465 A082968 * A232172 A114884 A132704 Adjacent sequences:  A136010 A136011 A136012 * A136014 A136015 A136016 KEYWORD nonn,easy AUTHOR Jack Preston (jpreston(AT)earthlink.net), Mar 20 2008 EXTENSIONS More terms from Stefan Steinerberger and Emeric Deutsch, Mar 24 2008 Spelling corrected by Jason G. Wurtzel, Aug 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 18 17:51 EDT 2019. Contains 321292 sequences. (Running on oeis4.)