login
A135914
a(n) = 4*3^n - 2*2^n - 1.
0
1, 7, 27, 91, 291, 907, 2787, 8491, 25731, 77707, 234147, 704491, 2117571, 6360907, 19099107, 57330091, 172055811, 516298507, 1549157667, 4647997291, 13945040451, 41837218507, 125515849827, 376555938091, 1129684591491, 3389087328907, 10167329095587
OFFSET
0,2
REFERENCES
G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
FORMULA
From Gary W. Adamson, Mar 08 2008: (Start)
Inverse binomial transform = A134067: (1, 6, 14, 30, 62, 126, ...).
Second inverse binomial transform = (1, 5, 3, 5, 3, 5, 3, 5, ...). (End)
From Colin Barker, Aug 13 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
G.f.: (1+x-4*x^2)/((1-x)*(1-2*x)*(1-3*x)). (End)
MATHEMATICA
Table[4*3^n-2*2^n-1, {n, 0, 30}] (* or *) LinearRecurrence[{6, -11, 6}, {1, 7, 27}, 30] (* Harvey P. Dale, Aug 26 2019 *)
CROSSREFS
Cf. A134067.
Sequence in context: A059823 A339771 A059769 * A213588 A305653 A282642
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 07 2008
STATUS
approved