login
A135839 * A000012 as infinite lower triangular matrices.
2

%I #11 Mar 27 2022 22:26:51

%S 1,2,1,2,1,1,3,2,1,1,3,2,2,1,1,4,3,2,2,1,1,4,3,3,2,2,1,1,5,4,3,3,2,2,

%T 1,1,5,4,4,3,3,2,2,1,1,6,5,4,4,3,3,2,2,1,1,6,5,5,4,4,3,3,2,2,1,1,7,6,

%U 5,5,4,4,3,3,2,2,1,1,7,6,6,5,5,4,4,3,3,2,2,1,1,8,7,6,6,5,5,4,4,3,3,2,2,1,1

%N A135839 * A000012 as infinite lower triangular matrices.

%C Row sums = A004652 starting (1, 3, 4, 7, 9, 13, 16, 21, ...).

%H G. C. Greubel, <a href="/A135840/b135840.txt">Table of n, a(n) for the first 50 rows</a>

%F T(1, 1) = 1, T(n, 1) = floor((n + 2)/2), T(n, n) = 1, T(n, k) = floor((n - k + 2)/2). - _G. C. Greubel_, Dec 05 2016

%e First few rows of the triangle:

%e 1;

%e 2, 1;

%e 2, 1, 1;

%e 3, 2, 1, 1;

%e 3, 2, 2, 1, 1;

%e 4, 3, 2, 2, 1, 1;

%e 4, 3, 3, 2, 2, 1, 1;

%e 5, 4, 3, 3, 2, 2, 1, 1;

%e ...

%t T[1, 1] := 1; T[n_, 1] := Floor[(n + 2)/2]; T[n_, n_] := 1; T[n_, k_] := Floor[(n - k + 2)/2]; Table[T[n, k], {n, 1, 8}, {k, 1, n}]//Flatten (* _G. C. Greubel_, Dec 05 2016 *)

%Y Cf. A135839, A004652, A135841.

%K nonn

%O 1,2

%A _Gary W. Adamson_, Dec 01 2007