login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135813 Number of coincidence-free length n lists of 7-tuples with all numbers 1,...,n in tuple position k, for k=1..7. 3
1, 0, 127, 279554, 4585352445, 358295150440964, 100303980203191474555, 82605709118517742843295238, 173237539725464803175622157326841, 828591383820135935294977528049328110600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) enumerates (ordered) lists of n 7-tuples such that every number from 1 to n appears once at each of the seven tuple positions and the j-th list member is not the tuple (j,j,j,j,j,j,j), for every j=1,..,n. Called coincidence-free 7-tuple lists of length n. See the Charalambides reference for this combinatorial interpretation.

REFERENCES

Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 187, Exercise 13.(a), for r=7.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..90

FORMULA

a(n) = Sum_{j=0,..,n}( ((-1)^(n-j))*binomial(n,j)*(j!)^7 ). See the Charalambides reference a(n)=B_{n,7}.

EXAMPLE

7-tuple combinatorics: a(1)=0 because the only list of 7-tuples composed of 1 is [(1,1,1,1,1,1,1)] and this is a coincidence for j=1.

7-tuple combinatorics: from the 2^7=128 possible 7-tuples of numbers 1 and 2 all except (1,1,1,1,1,1,1) appear as first members of the length 2 lists. The second members are the 7-tuples obtained by interchanging 1 and 2 in the first member. E.g. one of the a(2)=2^7-1 =127 lists is [(1,1,1,1,1,1,2),(2,2,2,2,2,2,1)]. The list [(1,1,1,1,1,1,1),(2,2,2,2,2,2,2) does not qualify because it has in fact two coincidences, those for j=1 and j=2.

MATHEMATICA

Table[Sum[(-1)^(n - k)*Binomial[n, k]*(k!)^7, {k, 0, n}], {n, 0, 25}] (* G. C. Greubel, Nov 23 2016 *)

CROSSREFS

Cf. A135812 (coincidence-free 6-tuples).

Sequence in context: A195218 A215692 A212860 * A112016 A263165 A135982

Adjacent sequences:  A135810 A135811 A135812 * A135814 A135815 A135816

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang Jan 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 11:46 EDT 2019. Contains 321448 sequences. (Running on oeis4.)