|
|
A135767
|
|
sigma_0(n)-omega(n)-Omega(n) (sigma_0 = A000005 = # divisors, omega = A001221 = # prime factors, Omega = A001222 = # prime factors with multiplicity).
|
|
3
|
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 5, 0, 0, 1, 1, 0, 2, 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 5, 0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 2, 0, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,24
|
|
COMMENTS
|
A102467 = { n | a(n)>0 } ; A102466 = { n | a(n)=0 } = { n | omega(n)=1 or Omega(n)=2 }: these are exactly the prime powers (>1) and semiprimes. For all other numbers a(n) > 0 since for each of the Omega(n) prime power divisors, other divisors are obtained by multiplying it with another prime factor, which gives more than omega(n) different additional divisors. a(n)>0 is also equivalent to A001037(n) > A107847(n), i.e. there are strictly fewer nonzero sums of non-periodic subsets of U_n (n-th roots of unity) than there are non-periodic binary words of length n. Otherwise stated, a(n)>0 if there is a non-periodic subset of U_n with zero sum. Non-periodic means having no rotational symmetry (except for identity).
|
|
LINKS
|
M. F. Hasler, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n)=0 <=> omega(n)=1 or Omega(n)=2 <=> n is semiprime or a prime power (>1) <=> A001037(n) = A107847(n) <=> all non-periodic subsets of U_n have nonzero sum
|
|
MATHEMATICA
|
a[n_] := DivisorSigma[0, n] - PrimeOmega[n] - PrimeNu[n];
Array[a, 105] (* Jean-François Alcover, Jun 21 2018 *)
|
|
PROG
|
(PARI) A135767(n)=numdiv(n)-omega(n)-bigomega(n)
|
|
CROSSREFS
|
Cf. A102466, A102467 ; A001037, A107847.
Sequence in context: A248639 A293959 A333146 * A208575 A070203 A070201
Adjacent sequences: A135764 A135765 A135766 * A135768 A135769 A135770
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
M. F. Hasler, Jan 14 2008
|
|
STATUS
|
approved
|
|
|
|