This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135746 E.g.f.: A(x) = Sum_{n>=0} exp(n^2*x) * x^n/n!. 5
 1, 1, 3, 16, 137, 1536, 22417, 407884, 8920641, 230576320, 6928080641, 238375169484, 9288784476193, 406150114297552, 19761959813464065, 1062437048084297596, 62727815353861478273, 4045278841893314992896 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = Sum_{k=0..n} C(n,k)*(k^2)^(n-k). O.g.f.: Sum_{n>=0} x^n/(1 - n^2*x)^(n+1). [From Paul D. Hanna, Aug 08 2009] EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 137*x^4/4! + 1536*x^5/5! +... where A(x) = 1 + exp(x)*x + exp(4*x)*x^2/2! + exp(9*x)*x^3/3! + exp(16*x)*x^4/4! + exp(25*x)*x^5/5! +... O.g.f.: F(x) = 1 + x + 3*x^2 + 16*x^3 + 137*x^4 + 1536*x^5 + 22417*x^6 +... where F(x) = 1 + x/(1-x)^2 + x^2/(1-4*x)^3 + x^3/(1-9*x)^4 + x^4/(1-16*x)^5 + x^5/(1-25*x)^6 +... PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(k^2)^(n-k))} (PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(k^2*x +x*O(x^n))*x^k/k!), n)} (PARI) {a(n)=polcoeff(sum(k=0, n, x^k/(1-k^2*x +x*O(x^n))^(k+1)), n)} [From Paul D. Hanna, Aug 08 2009] CROSSREFS Cf. variants: A135742, A135743, A135744, A135745, A135747. Sequence in context: A119392 A129043 A182951 * A006057 A002719 A020554 Adjacent sequences:  A135743 A135744 A135745 * A135747 A135748 A135749 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .