login
A135744
E.g.f.: A(x) = Sum_{n>=0} exp( n*(n+1)*x ) * x^n/n!.
6
1, 1, 5, 31, 297, 3781, 60373, 1188699, 28003825, 772499593, 24613769061, 894386029879, 36653691106585, 1679283513161229, 85360981759418485, 4781873479864452211, 293487961919565420897, 19633825959679051986961
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * ( k*(k+1) )^(n-k).
O.g.f.: Sum_{n>=0} x^n / (1 - n*(n+1)*x)^(n+1). - Paul D. Hanna, Jul 30 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*(2*Binomial[k + 1, 2])^(n - k), {k, 0, n}], {n, 1, 25}]}] (* G. C. Greubel, Nov 05 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(k*(k+1))^(n-k))}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(k*(k+1)*x +x*O(x^n))*x^k/k!), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* From Sum_{n>=0} x^n/(1 - n*(n+1)*x)^(n+1): */
{a(n)=polcoeff(sum(k=0, n, x^k/(1-k*(k+1)*x +x*O(x^n))^(k+1)), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A360774 A176302 A129586 * A363744 A372162 A307615
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2007
STATUS
approved