OFFSET
1,1
COMMENTS
Any of the sequences u=U(2,2n+1) has u[1]=2 and u[n+4]=4n+4; in between these there are the odd numbers 2n+1,...,4n-3. For n>1 there are no other even terms and the sequence of first differences becomes periodic for k>=t (transient phase), such that u[k] = u[k-floor((k-t)/p)*p] + floor((k-t)/p)*d, where p is the period (cf. A100729) and d the fundamental difference (cf. A100730). See the cross-references, especially A002858, for more information.
LINKS
EXAMPLE
The sequence contains the terms of the table T[n,k] = U(2,2n+1)[k], read by antidiagonals: a[1]=T[1,1]=2, a[2]=T[1,2]=3, a[3]=T[2,1]=2, a[4]=T[1,3]=5,...
n=1: U(2,3)= 2, 3, 5, 7, 8, 9,13,14...
n=2: U(2,5)= 2, 5, 7, 9,11,12,...
n=3: U(2,7)= 2, 7, 9,11,13,...
n=4: U(2,9)= 2, 9,11,...
PROG
(PARI) ulam(a, b, Nmax=30, i)=a=[a, b]; b=[a[1]+b]; for( k=3, Nmax, i=1; while(( i<#b && b[i]==b[i+1] && i+=2 ) || ( i>1 && b[i]==b[i-1] && i++), ); a=concat(a, b[i]); b=vecsort(concat(vecextract(b, Str("^..", i)), vector(k-1, j, a[k]+a[j]))); i=0; for(j=1, #b-2, if( b[j]==b[j+2], i+=1<<j)); if(i, b=vecextract(b, 2^#b-1-i))); a
/* now this sequence */
A135737(Nmax=100)=local(T=vector(sqrtint(Nmax*2)+1, n, ulam(2, 2*n+1, sqrtint(Nmax*2)+2-n)), i, j); vector(Nmax, k, if(j>1, T[i++ ][j-- ], j=i+1; T[i=1][j]))
CROSSREFS
KEYWORD
AUTHOR
M. F. Hasler, Nov 26 2007
STATUS
approved