|
|
|
|
0, 839, 1678, 2517, 3356, 4195, 5034, 5873, 6712, 7551, 8390, 9229, 10068, 10907, 11746, 12585, 13424, 14263, 15102, 15941, 16780, 17619, 18458, 19297, 20136, 20975, 21814, 22653, 23492, 24331, 25170, 26009, 26848, 27687, 28526
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The 146th prime number (839) and some of its multiples are related to the exceptional Lie group E_8 calculation because the result is a matrix with 453060 rows and columns. The size of the matrix is the member a(540)=453060 of this sequence. The number 839 is the largest prime factor of 453060 because we can write 2*2*3*3*3*5*839=453060. The number of entries of the matrix is the member a(244652400)=453060*453060=205263363600.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
American Institute of Mathematics, Mathematicians Maps E_8.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
|
|
FORMULA
|
From G. C. Greubel, Oct 25 2016: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (839*x)/(1 - x)^2.
E.g.f.: 839*x*exp(x). (End)
|
|
EXAMPLE
|
a(1)=839. a(540)=540*839=453060. a(244652400)=244652400*839=205263363600.
|
|
MATHEMATICA
|
839Range[0, 40] (* Harvey P. Dale, Sep 13 2011 *)
LinearRecurrence[{2, -1}, {0, 839}, 25] (* G. C. Greubel, Oct 25 2016 *)
|
|
CROSSREFS
|
Cf. A064730, A134888, A134950, A134960, A135631.
Sequence in context: A284187 A202716 A118380 * A158401 A290119 A156937
Adjacent sequences: A135636 A135637 A135638 * A135640 A135641 A135642
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Omar E. Pol, Nov 27 2007
|
|
STATUS
|
approved
|
|
|
|