login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135522 a(n) = 2*a(n-1) + 3*a(n-2), with a(0) = 2 and a(1) = 3. 15
2, 3, 12, 33, 102, 303, 912, 2733, 8202, 24603, 73812, 221433, 664302, 1992903, 5978712, 17936133, 53808402, 161425203, 484275612, 1452826833, 4358480502, 13075441503, 39226324512, 117678973533, 353036920602, 1059110761803 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Also: inverse binomial transform of A135520. - R. J. Mathar, Apr 17 2008

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,3).

FORMULA

From R. J. Mathar, Feb 23 2008: (Start)

O.g.f.: (5/(1-3*x) + 3/(1+x))/4.

a(n) = (5*3^n + 3*(-1)^n)/4. (End)

G.f.: (x-2)/(3*x^2 + 2*x - 1). - Harvey P. Dale, Mar 14 2011

E.g.f.: (1/4)*(5*exp(3*x) + 3*exp(-x)). - G. C. Greubel, Oct 17 2016

MATHEMATICA

f[n_]:=3/(n+2); x=2; Table[x=f[x]; Numerator[x], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2010 *)

Transpose[NestList[Join[Rest[#], ListCorrelate[{3, 2}, #]]&, {2, 3}, 30]][[1]]  (* Harvey P. Dale, Mar 14 2011 *)

CoefficientList[Series[(x-2)/(3x^2+2x-1), {x, 0, 30}], x]  (* Harvey P. Dale, Mar 14 2011 *)

PROG

(PARI) a(n)=(5*3^n+3*(-1)^n)/4 \\ Charles R Greathouse IV, Jun 01 2011

(MAGMA) [(5*3^n+3*(-1)^n)/4: n in [0..40]]; // Vincenzo Librandi, Jun 02 2011

CROSSREFS

Cf. A060925.

Sequence in context: A076424 A165301 A072440 * A107240 A099171 A268561

Adjacent sequences:  A135519 A135520 A135521 * A135523 A135524 A135525

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Feb 19 2008

EXTENSIONS

More terms from R. J. Mathar, Feb 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 18:49 EDT 2021. Contains 342853 sequences. (Running on oeis4.)