This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135521 2^(A091090(n)) - 1. 1
 1, 1, 3, 1, 3, 1, 7, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS EXAMPLE Contribution from Omar E. Pol, Mar 11 2011 (Start): Can be written as a triangle with 2^k entries on each row: 1, 1,3, 1,3,1,7, 1,3,1,7,1,3,1,15, 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31, 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3, 1,7,1,3,1,63, Last term of rows are 2^(k+1) - 1. It appears that the row sums give A001787. (End) MAPLE GS(2, 6, 200); [see A135416]. # Input n is the number of rows. A135521_list := proc(n) local i, k, NimSum; NimSum := proc(a, b) option remember; local i; zip((x, y)->`if`(x<>y, 1, 0), convert(a, base, 2), convert(b, base, 2), 0); add(`if`(%[i]=1, 2^(i-1), 0), i=1..nops(%)) end: seq(seq(NimSum(i, i+1), i=0..2^k-1), k=0..n) end: A135521_list(5); # - Peter Luschny, May 31 2011 MATHEMATICA Flatten[Table[BitXor[i, i + 1], {k, 0, 10}, {i, 0, -1 + 2^k}]] - Peter Luschny, May 31 2011 CROSSREFS Cf. A135416, A091090. This is Guy Steele's sequence GS(2, 6) (see A135416). Cf. A000225, A001787. - Omar E. Pol, Mar 11 2011 Sequence in context: A066637 A050336 A095250 * A176032 A218403 A122410 Adjacent sequences:  A135518 A135519 A135520 * A135522 A135523 A135524 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, based on a message from Guy Steele and D. E. Knuth, Mar 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 24 06:29 EDT 2013. Contains 225617 sequences.