login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135504 a(1)=1; for n>1, a(n) = a(n-1) + lcm(a(n-1),n). 3
1, 3, 6, 18, 108, 216, 1728, 3456, 6912, 41472, 497664, 995328, 13934592, 27869184, 167215104, 334430208, 6019743744, 12039487488, 240789749760, 481579499520, 963158999040, 11557907988480, 277389791723520, 554779583447040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence has properties related to primes. For instance: a(n+1)/a(n)-1 consists of 1's or primes only. Any prime p>=3 divides a(n) for the first time when n=p*w(p)-1 where w(p) is the least positive integer such that p*w(p)-1 is prime.

LINKS

T. D. Noe, Table of n, a(n) for n=1..100

MATHEMATICA

a[1] = 1; a[n_] := a[n] = a[n-1] + LCM[a[n-1], n]; Table[a[n], {n, 1, 24}] (* Jean-Fran├žois Alcover, Dec 16 2011 *)

RecurrenceTable[{a[1]==1, a[n]==a[n-1]+LCM[a[n-1], n]}, a, {n, 30}] (* Harvey P. Dale, Mar 03 2013 *)

PROG

(PARI) x1=1; for(n=2, 40, x2=x1+lcm(x1, n); t=x1; x1=x2; print1(x2, ", "))

(Haskell)

a135504 n = a135504_list !! (n-1)

a135504_list = 1 : zipWith (+)

                   a135504_list (zipWith lcm a135504_list [2..])

-- Reinhard Zumkeller, Oct 03 2012

(Python)

from sympy import lcm

l=[0, 1]

for n in xrange(2, 101):

    x=l[n - 1]

    l+=[x + lcm(x, n), ]

print l # Indranil Ghosh, Jun 27 2017

CROSSREFS

Cf. A106108.

Sequence in context: A076510 A220816 A038060 * A057268 A085401 A085061

Adjacent sequences:  A135501 A135502 A135503 * A135505 A135506 A135507

KEYWORD

nonn,nice,changed

AUTHOR

Benoit Cloitre, Feb 09 2008, Feb 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 04:43 EDT 2017. Contains 288813 sequences.