login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135503 a(n) = n*(n^2 - 1)/2. 5
0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.

Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)

-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).

This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).

For k > 2, there is an infinite number of solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.

A shifted version of A027480. - R. J. Mathar, Apr 07 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

C. D. Bennet, A. M. W. Glass and G. J. Székely, Fermat's Last Theorem for Rational Exponents, Am. Math. Monthly 111 (2004), 322-329. - R. J. Mathar, Apr 21 2009

FORMULA

From R. J. Mathar Feb 20 2008: (Start)

O.g.f.: 3*x^2/(-1+x)^4.

a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)

G.f.: 3*x^2*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013

a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014

E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016

From Miquel Cerda, Dec 25 2016: (Start)

a(n) = A000578(n) - A006003(n).

a(n) = A004188(n) - A000578(n).

a(n) = A007588(n) - A004188(n). (End)

a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018

EXAMPLE

For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.

MATHEMATICA

Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)

PROG

(PARI) flt2(n, p) = { local(a, b); for(a=0, n, b = (a^3-a)/2; print1(b", ") ) }

CROSSREFS

Sequence in context: A164013 A057671 A027480 * A048088 A064181 A281434

Adjacent sequences:  A135500 A135501 A135502 * A135504 A135505 A135506

KEYWORD

nonn,easy

AUTHOR

Cino Hilliard, Feb 09 2008

EXTENSIONS

Edited by R. J. Mathar, Apr 21 2009

New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 22:28 EST 2019. Contains 320138 sequences. (Running on oeis4.)