This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135376 a(n) = the smallest prime that does not divide n(n+1)/2. 1
 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 11, 2, 2, 5, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 11, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 5, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 11, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 5, 2, 2, 7, 3, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(4n+1) = a(4n+2) = 2 for all nonnegative integers n. a(n) = A053670(n) for all n congruent to 0 or 3 (mod 4). LINKS FORMULA a(n) = A053669(A000217(n)). - R. J. Mathar, Dec 11 2007 EXAMPLE The 11th triangular number is 66 = 2*3*11. 5 is the smallest prime that is coprime to 66, so a(11) = 5. MAPLE A135376 := proc(n) local T, p ; T := n*(n+1)/2 ; p := 2 ; while T mod p = 0 do p := nextprime(p) ; od: RETURN(p) ; end: seq(A135376(n), n=1..120) ; - R. J. Mathar, Dec 11 2007 MATHEMATICA a = {}; For[n = 1, n < 80, n++, j = 1; While[Mod[n*(n + 1)/2, Prime[j]] == 0, j++ ]; AppendTo[a, Prime[j]]]; a - Stefan Steinerberger, Dec 10 2007 CROSSREFS Cf. A053670. Sequence in context: A197591 A097891 A097611 * A132850 A076561 A132851 Adjacent sequences:  A135373 A135374 A135375 * A135377 A135378 A135379 KEYWORD nonn AUTHOR Leroy Quet Dec 09 2007 EXTENSIONS More terms from Stefan Steinerberger and R. J. Mathar, Dec 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .